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Dynamo action and cosmic magnetic fields

André Giesecke et al. (HZDR) Periodically Perturbed Dynamos Freiburg, May. 8th, 2018 2 / 23

cosmic magnetic fields can be observed on all scales:
asteroids, moons, planets, stars, galaxies, ...

magnetic field generation process:
homogenous dynamo: transfer of kinetic energy of a flow
of a conductive fluid into magnetic energy
⇒ numerical, theoretical and experimental studies on

fluid flow driven magnetic field generation

this talk: focus on experimental dynamo action, but
motivation also by natural systems

response of system with impact by external periodic
perturbation

dynamo efficiency (growth rate, threshold), phase



Fluid Flow Driven Dynamo Experiments
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complex problem because induced currents do not flow along fixed
path (like in technical dynamo) but are determined by the nature of
the induced electromotive force E ∝ u× B

three successful experiments with fluid flow driven dynamo action

precession dynamo experiment is under construction at HZDR
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Example: Von-Kármán-Sodium (VKS) dynamo
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flow of liquid sodium driven by
two counterrotating impellers

mean flow structure: two poloidal
cells, two toroidal cells (S2T2)

dynamo at Rmc = UmaxR/η ≈ 32
but soft iron impellers µr ≈ 65

from Monchaux et al., PRL, 2007



Flow model for the VKS dynamo
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water experiment at Universidad de Navarra (Pamplona)
used for estimation of flow properties

turbulent flow
in water experiment

mean axi-
symmetric flow

non-axisymmetric
m = 2 perturbation
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Dynamo action and periodic perturbations
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impact of non-axisymmetric perturbations on dynamo
action driven by a large scale axisymmetric flow

⇒ beneficial or obstructive

possible realisation in natural or experimental dynamos
– convection driven dynamos with impact from

tidal forcing (m = 2) or precession (m = 1)
– azimuthally drifting vortices in cylindrical flow with

von-Kármán like driving (Giesecke et al. PRE 2012)
– ’swing-excitation’ caused by density waves in

spiraling galaxies (Chiba & Tosa, MNRAS 2002)

synchronization of dynamo cycles with external impact
of periodic distortion (Stefani et al, Solar Physics 2016)



Kinematic models
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induction equation

∂

∂t
B = ∇× (u× B− η∇× B)

B ∼ B0(r)eλt ⇒ λB = MB

prescribed velocity field u(r, t)

linear problem ⇒ eigenvalues λ

no magnetic backreaction

Two different approaches for solution

(1) timestepping with hybrid Finite Volume/Boundary Element Method
⇒ calculation of eigenvalues ⇒ λ = γ + iω

with growth rates γ and frequencies ω

(2) simple analytic model for field amplitude
⇒ periodic velocity perturbation u = uaxi0 + εunonaxi1 (t)
⇒ Floquet-theorem: B ∼ P(t)eRt with P(t) same periode as

perturbation and constant matrix R



Simplified velocity model
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Beltrami like flow ∇× u ∝ u
⇒ helicity maximizing
⇒ well suited for dynamo action

meridional flow: u = ∇×Ψ with
Ψ = J1(αr) sin

(
2πz
H

)
êϕ

toroidial flow is given by

uϕ = −
√
α2+

(
2π
H

)2
J1(αr)sin

(
2πz
H

)
J1 cylindrical Bessel function
α = 3.8317 (first zero of J1)

⇒ ∇× u = −
√
α2 + (nπH )2u

flow consists of 2 toroidal flow cells
with different orientation and 2 recir-
culating cells in the meridional plane
(somehow related to the mean flow in
the VKS dynamo)



Modelling the velocity perturbation
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u′(r, t) = ∇× A cos(m(ϕ+ ω)t) with A = Var [cos(2πr)−1]cos(2πz)êz

vortex-like structure along the axis with azimuthal wavenumber m = 2

azimuthal propagation of perturbation with drift frequency ω



Numerical Results: temporal evolution of B
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temporal behavior of magnetic eigenmode depends on azimuthal drift
of the non-axisymmetric perturbation

”fast” drift ⇒ decaying solution with amplitude modulation

”slow drift”⇒ growing solution and no amplitude modulation



Visualization of the behavior
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Growth rates and frequencies
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Coalescence of Eigenmodes

merging of eigenmodes ⇒ parametric resonance for |ω| . 2ω0

exceptional points (degeneration of eigenvalues and eigenfunctions)

frequency locking within resonant regime

similar to mechanical systems subject to periodic distortions



Analogy with periodically perturbed oscillator
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Matthieu Equation: Q̈ + ω2(t)Q =0 with ω(t) = ω0(1 + ε cos(ω̃t))

⇒ growthrates in resonant regime: γ = ±
√

(εω0)2 − (ω̃ − 2ω0)2

outside resonance: ω=0.5ω̃±
√

(ω̃−2ω0)2−(εω0)2

⇒ within resonant regime solution locks to perturbation frequency ω= ω̃



Reduction of threshold
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“asymptotic” behavior for increasing perturabtion amplitude

reduction from Rmc = 39 to Rmc = 26

optimum depends on azimuthal drift of unperturbed eigenmode
(here strongest reduction for “standing” vortices with ω = 0)



More complex solutions possible...
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non-drifting basic state but amplitude modulation of magnetic field

sharp peaks for Ωp ≈ 2Ω0 ⇒ parametric resonance

location of maximum depends on amplitude of perturbation

broader peaks for larger frequencies (but no resonance)



Temporal behavior of magnetic eigenmode
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Low dimensional model
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assume axisymmetric flow U0 and a non-axisymmetric periodic
perturbation with azimuthal wave number m̃ and frequency ω

U(r, t)=U0(r , z) + ε
[
um̃(r , z)e i(m̃ϕ+ωt) + u−m̃(r , z)e−i(m̃ϕ+ωt)

]
reduction of induction equation into a system of equations for the
amplitude of azimuthal field modes

B =
M∑
−M

b̂m(t)bm(r , z)e imϕ

Assumptions

modes are modulated by simple temporal varying amplitude

consider only leading eigenmode for each azimuthal wave number
(i.e. only one single mode is close to be unstable)

but linear operator in induction equation is non-normal
⇒ in general these assumptions are not correct



Floquet approach
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B =
M∑
−M

b̂m(t)bm(r , z)e imϕ ⇒ induction equation written as matrix equation

d

dt
B(t) = A(t)B(t)

A =



. . .
. . .

. . .
. . .

. . .

· · · 0 α∗
3,5f

∗
t α∗

3,3 α∗
3,1ft 0 · · ·

· · · 0 α∗
1,3f

∗
t α∗

1,1 α∗
1,−1ft 0 · · ·

· · · 0 α1,−1f
∗
t α1,1 α1,3ft 0 · · ·

· · · 0 α3,1f
∗
t α3,3 α3,5ft 0 · · ·

. . .
. . .

. . .
. . .

. . .


diagonal elements: αj ,j are the growth rates of the unperturbed case

off-diagonal parameters αm,m±2 ⇒ interaction of adjacent modes

time dependence: ft = εe iωt



Floquet approach
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(1) solution of d
dtB(t) = A(t)B(t) with a T -periodic matrix A(t)=A(t+T )

and a n−dimensional vector B is given by B(t) = P(t)eRt with a
T -periodic invertible matrix P(t) = P(t + T ) and a constant matrix R

(2) it is always possible to find a transformation B(t) = P(t)X (t) such
that d

dtX (t) = RX (t) and R = e−iDtAe iDt − iD is constant

(3) in our particular case we can write A(t) = e iDωtÂe−iDωt with Â the
matrix A without time modulation e±iωt and

Dω =


−M

2
ω 0

0 −M−2
2
ω 0

0
. . . 0
0 M−2

2
ω 0

0 M
2
ω


⇒ R = Â− iDω so that dX

dt =
(
Â− iDω

)
X with solutions X = X0e

σ̃t

⇒ eigenvalues σ̃ are roots of characteristic equation
∣∣∣Â− iDω − σ̃I

∣∣∣ = 0



Example: Truncation at M = 1
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( d
dt b̂−1

d
dt b̂1

)
=

(
α∗ εe−iωtγ∗

εe iωtγ α

)(
b̂−1

b̂1

)
⇒

Â =

(
α∗ εγ∗

εγ α

)
Dω =

(
−ω/2 0

0 ω/2

)
characteristic equation(
α∗ + i ω2− σ̃

)(
α− i ω2− σ̃

)
− ε2 |γ|2 = 0⇒ σ̃±=αr±1

2

√
4ε2|γ|2−(2αi−ω)2
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Perturbed system
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higher truncation order: M = 3
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models become more complex for higher truncation order

interaction m = 1 and m = −1⇒ parametric resonance
interaction m = 1 and m = 3⇒ amplification, no frequency locking



Perturbed system
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incvreasing order of truncation (M = 1, 3, 5) leads to increasing
complexity ⇒ coupling must decrease for convergence of model
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Summary, Conclusions & Outlook
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external perturbation may have a significant impact on dynamo
action driven by a large scale axisymmetric flow

mechanism: coupling of different eigemodes
⇒ enhancement of dynamo efficiency

complex dependence on frequency and amplitude

Natural example: precession driven flows in case of a triadic
resonance of inertial modes but realization not very probable

frequency locking occurs in case of parametric resonance but
amplificatin/enhancement of growth rates possible without
synchronization

frequency locking requires Ωp = 2Ω0, i.e. adoption of external
perturbation frequency to internal frequency of system
⇒ different from non-linear synchronization in dynamo model
presented by Frank


