

## **The Broad Band Imager** for the European Solar Telescope

## M. Munari<sup>1</sup>, S. Scuderi<sup>1,2</sup>, M. Cecconi<sup>3</sup>



 <sup>1</sup>INAF – Osservatorio Astrofísico di Catania, Via S. Sofia 78, I-95123 Catania, Italy

<sup>2</sup> INAF - IASF Milano, Via E. Bassini 15, 1-20133 Milano, Italy
 <sup>3</sup> INAF – Fundación Galileo Galilei, Rambla José Ana Fernández Pérez, 7, 38712 Breña Baja, TF - Spain

| SCIENCE PROGRAMS               | REQUIREMENTS                                                         |                                                           |  |
|--------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------|--|
| Chromospheric response         | Operational Wavelengths                                              | See filter list                                           |  |
| to convective collapse         | Number of spectral                                                   | 2 abannala yyanking ainyyltanaayalyy                      |  |
| Internal structure of magnetic | channels                                                             | 5 channels working simulaneously                          |  |
| elements                       | Observation modes                                                    | - Optimum spatial resolution                              |  |
| Fields in granular convection  |                                                                      | <ul> <li>Maximum field of view</li> </ul>                 |  |
| Flux cancellations             | Maximum Field of View                                                | 2'x2'                                                     |  |
| Internetwork fields            | Angular Resolution                                                   | - 0.04" @ 500 nm (goal of 0.03")                          |  |
|                                |                                                                      | <ul> <li>Optimum on a 60"x60" Field of View</li> </ul>    |  |
| Polar magnetic fields          | Mosaic Mode 3'x3' mosaic mode at optimal resolution (60"x60" patches |                                                           |  |
| Network element dynamics       | Wavelength Coverage                                                  | From 390 nm to 900 nm                                     |  |
| Highly variable phenomena      | Wavelength Bandpass                                                  | See filters specifications                                |  |
| in the chromosphere            | Wavelength Switching                                                 | < 2 seconds                                               |  |
| □ Sunspots                     | Maximum bandpass shift                                               | 5x10-3nm (goal 3x10-3) @ 500nm, 30" from the field center |  |
| Flares                         | Transmission                                                         | Total throughput > 30%                                    |  |
|                                |                                                                      |                                                           |  |

Imaging instrument to obtain high resolution images over the full Field of View of EST (diffraction limited in 1'x1' patches) at multiple wavelengths and high frame rate.

- After evaluation of all refractive and reflective/refractive designs, an all refractive design has been chosen on the basis of performances and simplicity.
- Two Arms completely independent → A Blue Arm (for filters in the 380nm 500nm range) and a Red Arm (for filters in the 600nm – 900nm range). Each arm will optimize optical performances and throughput through appropriate choice of optics, coatings and detectors
- The **Blue Arm**  $\rightarrow$  two channels each divided in three sub-channels.
- The Red Arm  $\rightarrow$  one channel divided in three sub-channels.
- Each channel has two alternative observing modes → An High Resolution mode and a Maximum Field of View mode
- At the moment all three channels share the same design: a four elements optical relay. Switching between the two modes is obtained using movable flat mirrors.
- The three sub–channels of each channel share the same optics → See the same aberrations
- CCD and CMOS detector s are being evaluated as default detectors for the BBI instrument

Out of the three sub-channels of each channel, a first one hosts narrow band filters for chromospheric observations, a second one hosts in focus wide band filters used as reference for speckle reconstruction and photospheric observations and the third one hosts out of focus wide band filters for phase diversity reconstruction of photospheric observations.



## FILTERS

- Bandwidths between 0.05 and 0.5 nm
- Sizes from 5 to 10 cm
- Telecentric configuration
- Interference, Lyot, Etalon filters.
- Optical quality at least  $\lambda/10$
- Homogeneous transmittance
- Maximum transmittance → Best effort basis

| Filter  | λ <sub>C</sub> | FWHM | Spectral Feature      |
|---------|----------------|------|-----------------------|
| Name    | [nm]           | [nm] |                       |
| BBI-WF1 | 388.30         | 0.5  | CN band head          |
| BBI-WF2 | 395.37         | 0.5  | Ca II H<br>continuum  |
| BBI-NF1 | 396.88         | 0.05 | Ca II H core          |
| BBI-NF2 | 396.47         | 0.05 | Ca II H wing          |
| BBI-WF3 | 417.00         | 0.5  | Paschen<br>continuum  |
| BBI-WF4 | 430.50         | 0.5  | G band                |
| BBI-WF5 | 436.39         | 0.5  | G band<br>continuum   |
| BBI-NF3 | 656.28         | 0.1  | Ηα                    |
| BBI-WF6 | 668.40         | 0.5  | Ha continuum          |
| BBI-WF7 | 840.00         | 0.5  | Brackett<br>continuum |
| BBI-NF4 | 854.20         | 0.05 | Ca II IR              |

3. 5,.