

EST Science Meeting 12^{th June 2018}

Flow-twist coupling in the solar atmosphere

Youra Taroyan

Department of Physics, Aberystwyth University, Wales

Solar System Physics Ffiseg Cysawd yr Haul Propagation of Alfven waves in a stratified solar atmosphere

$$\frac{\partial^2 b_{\theta}}{\partial t^2} = \frac{\partial}{\partial z} \left(c_A^2 \frac{\partial b_{\theta}}{\partial z} \right)$$

Alfven speed (Ferraro 1954) $c_A = \text{Alfven speed} = e^{-z}$ (Ferraro 1954)

What happens in a non-static atmosphere?

Propagation of Alfven waves in a stratified solar atmosphere

$$\frac{\partial^2 b_{\theta}}{\partial t^2} = \frac{\partial}{\partial z} \left(c_A^2 \frac{\partial b_{\theta}}{\partial z} \right) + flow \ terms$$

Alfven speed (Ferraro 1954) $c_A = \text{Alfven speed} = e^{-z}$ (Ferraro 1954)

downflow Taroyan & Williams ApJ 2016

 $u_0 = e^{-2z} - \text{downflow}$ Taroyan & Williams ApJ 2016

Analytical Results

$$\Im(\omega) = -\frac{1 + \Re(\nu)}{2} \left[\frac{du_0}{dz} \right]_{z=0} - \text{growth rate}$$

zero flow with flow

Wave Energy

$$\frac{\partial W_T}{\partial t} + \frac{\partial F_W}{\partial z} = -\frac{\partial u_0}{\partial z} W_m,$$

sum of kinetic and magnetic energy densities, W_{ave} sum of kinetic and magnetic energy densities, F_W — wave energy flux.

Van Noort et al., A&A 2013

Williams, Taroyan, Fedun, ApJ 2016

Simulation of a magnetic (Alfvén) wave interacting with a sonic shock above a sunspot.

Summary

- Efficient mechanism of coupling between decelerating (and accelerating!) flows and magnetic twists occurs both in the linear and nonlinear regimes.
- Large amplitude Alfven waves generated
- Shocked siphon flows are unstable
- A shock tube becomes globally twisted
- The shock is swept away by the increasing magnetic pressure gradient
- Future work will focus on transient flows

