ASTEROSEISMIC INVERSIONS IN THE KEPLER ERA: APPLICATION TO THE KEPLER LEGACY SAMPLE

Gaël Buldgen

University of Liège Prof. Marc-Antoine Dupret Dr. Daniel Reese

July 2016

Kepler

STRUCTURE OF THE PRESENTATION

Introduction

- 2 Indicators chosen for this study
- 3 Choosing the targets
- 4 Forward Modelling
- 5 Inversion Results
 - Inversion Results Doris
 - Inversion Results Saxo

6 Conclusion

INTRODUCTION - THE LEGACY SAMPLE

66 solar-like and F type stars

• High quality data, benchmark stars.

(Lund et al. 2016, Silva Aguirre et al. 2016)

INTRODUCTION - INVERSION TECHNIQUES

INTRODUCTION - INVERSION TECHNIQUES

INVERSION OF INTEGRATED QUANTITIES (INDICATORS)

Definition of an integrated quantity:

$$A = \int_0^R \mathcal{T}_A(r) s_A dr,$$

with s_A a function like ρ , c^2 , $u = P/\rho$... Take the linear perturbation and obtain:

$$\delta A = \int_0^R \mathcal{T}_A(r) \delta s_A dr,$$

If enough data and model good enough, one can use (Gough & Thompson 1991, Dziembowski (1990)):

$$\frac{\delta\nu^{n,l}}{\nu^{n,l}} = \int_0^R K^{n,l}_{s_A,s_B} \frac{\delta s_A}{s_A} dr + \int_0^R K^{n,l}_{s_B,s_A} \frac{\delta s_B}{s_B} dr.$$

- Requires enough frequencies,
- Provide additional constraints on stellar models.

SOME EXAMPLES OF INDICATORS

We use the SOLA technique (Pijpers & Thompson 1994) to compute corrections of these quantities.

INDICATORS FOR CONVECTIVE REGIONS

New indicator for stellar cores

We use an appropriated weight function along with the quantity $S_{5/3}^{-1}$ related to :

$$S_{5/3} = \frac{P}{\rho^{5/3}}$$

which reproduces the plateaus associated with convective envelopes and cores. We can probe both regions given the proper weight function.

CHOOSING THE FIRST TARGETS

Only 2 stars: Doris (KIC8006161) and Saxo (KIC6603624).

(Courtesy of M. Lund and V. Silva Aguirre.)

FORWARD MODELLING RESULTS

STRATEGY (2 Steps Levenberg-Marquardt minimization):

- Free parameters: Mass, Age, X_0 , Z_0 , α_{MLT} .
- Constraints: $\bar{\rho}$ (or $\langle \Delta \nu \rangle$ for the first step), $\tilde{\delta}\nu^{n,l}$, r_{01} , T_{eff} and $(Z/X)_S$.

Physical ingredients:

• Ceff e.o.s., OPAL opacities, microscopic diffusion, AGSS09 abundances but also tests with GN93.

RESULTS: $(Cles + Losc (Scuflaire et al. 2008a \& b))$			
	Doris	Saxo	Helium-mass
$Mass~(M_{\odot})$	0.91 - 1.02	0.93 - 1.05	degeneracy, diffusion,
Age (Gy)	4.6 - 5.3	7.6 - 8.7	opacities?

FORWARD MODELLING RESULTS

 \Rightarrow try the additional indicators like for 16Cyg.

Inversion Results

Inversion Results - Doris

INVERSIONS RESULTS - DORIS

Behaviour of both indicators? Different sensitivity?

CONSTRAINTS ON MASS AND AGE (PRELIMINARY) - DORIS

Results:

- all models include diffusion (models without diffusion are rejected),
- final dispersion with t_u (±2.5% in mass and ±4.5% in age),
- model-dependent results!
- Unlike 16Cyg, no fit of Y.

Inversion Results

Inversion Results - Saxo

INVERSIONS RESULTS - SAXO

Clear diagnostic, but solution needs to be studied carefully.

SOME LAST WORDS

To conclude:

- Inversions can be used for the Kepler legacy targets. Currently: Perky, Kitty, Arthur, Nunny, Doris and Saxo are done,
- New indicators for upper regions can be used for the best of the Legacy targets,
- 16Cyg is being re-studied (Collaboration with M. Deal et al.).
- S_{Core} applicable to convective cores.
- A question remains:
 - Coupling with forward modelling? (What constraints?)

Thank you for your attention!

APPENDICES - STRATEGY HARE AND HOUNDS 0

Test strategy

- Build target including complex physics
- Seismic modelling using simple physics
- Carry out inversions for indicators

APPENDICES - HARES AND HOUNDS 1

APPENDICES - HARES AND HOUNDS 2

APPENDICES - SCALING EFFECTS

APPENDICES - SCALING EFFECTS

KERNEL FITS - SAXO

KERNEL FITS - SAXO

KERNEL FITS - DORIS

KERNEL FITS - DORIS

KERNEL FITS - SAXO

