Plasma and magnetic field interaction in large- and small-scale on the lower solar atmosphere

Jose Iván Campos Rozo Supervisors: Dominik Utz Astrid Veronig

SOLARNET's Summer School and Training for Solar Observers – A week above the Clouds between Aug 5 – Aug 9, 2019. Tenerife, Spain

Motivation

Physical important processes are happening on large- and small-scales (temporal and spatial)

Apod: 2011 September 18 Credits: SST 2002

Multi-spectral studies

A better and full understanding of the solar evolution and activity could be drived by the study of the phenomena on different and co-temporal spectral lines.

Alma database

What kind of information we can obtain from observational data with LCT and Inversion techniques?

N nain topic^{III} *N nain topic*^{III} *N F* From LCT we can infer plasma dynamics due to proper motions detected and calculated from the intensity variations of the images

M⁹ to learn^{1,1} M⁹ ☆ Inversion of Stokes parameter techniques let us analize the response of certain spectral lines to variations of temperature, magnetic field vector, doppler velocity among others

Flow field temporal evolution

We applied local correlation tracking (LCT) to the study of the dynamics of plasma as well as magnetic elements related to AR 11190.

Flow field temporal evolution

$$f(v, \sigma_{R_1}) + f(v, \sigma_{R_2}) = A_1 \cdot \frac{v}{\sigma_{R_1}^2} \exp\left(\frac{-v^2}{2\sigma_{R_1}^2}\right)$$
$$+ B_1 \cdot \frac{v}{\sigma_{R_2}^2} \exp\left(\frac{-v^2}{2\sigma_{R_2}^2}\right)$$

Eq 1: Sum of two rayleigh distributions

$$f(v, \sigma_{R_3}) + f(v, \mu_G, \sigma_G) = A_2 \cdot \frac{v}{\sigma_{R_3}^2} \exp\left(\frac{-v^2}{2\sigma_{R_3}^2}\right) + \frac{B_2}{\sqrt{2\pi}\sigma_G} \exp\left(\frac{-(v-\mu_G)^2}{2\sigma_G^2}\right)$$

Assumptions

Eq 2: Sum of one rayleigh distribution plus a gaussian distribution

Campos Rozo, J. I. et al. 2019

Going to small scales...

Going into the new research

Gregor campaign observation September 18-29, 2017

Observing team:

- Dominik Utz (P. I.)
- Peter Gömöry
- Christoph Kuckein
- Horst Balthasar
- Norbert Magyar
- Jose Ivan Campos Rozo
- Stefan Hofmeister
- Otmar Kühner
- Thomas Keller (technician)

Collaboration team:

- Sergio Gonzalez Manrique
- Meetu Verma
- Carsten Denker
- Judith Palacios
- ✦ Julius Koza
- 🔶 Kilian Krikova
- Luis Bellot Rubio
- Santiago Vargas Dominguez

GRIS: GREGOR Infrared Spectrograph

Coaligment of GRIS data and HMI/SDO data set

HMI Continuum 2017-09-28 08:44:01 UTC

Coaligment of GRIS data and HMI/SDO data set

HMI LOS magnetogram 2017-09-28 08:45:31 UTC

First results for the Stokes parameters inversions

Future work

LCT can not solve very well magnetic field horizontal motions Working now in one a Python's adaptation to the ILCT code (Applying the Induction equation) Stay tunned (It is al ready in the oven)

Comparison between LCT, ILCT, and DAVE4VM (All of them working very well in Python)

Thank you for your attention

Solar and moon phases representation from the Colombian indigen cultures (Chibchas indigens)