

Ground-Based Solar Image Enhancement with Deep Learning

Robert Jarolim¹, Astrid Veronig^{1,2}, Werner Pötzi², Tatiana Podladchikova³

¹Institute of Physics, University of Graz, Austria ²Kanzelhöhe Observatory for Solar and Environmental Research, University of Graz, Austria ³Skolkovo Institute for Science and Technology, Moscow, Russia

- Neural networks are universal approximators.
- Advanced Architectures can be used to sample data.

Deep Learning Applications

Flare Detection

Unsupervised detection of atmospheric effects

Reconstruction of distorted images

Coronal Hole Extraction

With the use of cycle consistency the mapping between image domains can be learned.

Translation between image domains

Enhancement of real degraded images

