

Getting and complementing your data Catherine Fischer

A week above the clouds SOLARNET SCHOOL FOR OBSERVERS 2019

Data taken by GREGOR

Outline

Short Intro to SolarSoft

PART I

Data acquisition:

- Data archives
- Writing an Observing Proposal
- Applying for Co-Observing

PART II

- Alignment of data
- Catalogues, Event search
- Reading and Viewing data
- Practical: Context data for the GREGOR GFPI data 12.08.2014

SolarSoft -Solar data analysis

<u>http://</u> <u>www.lmsal.com/</u> <u>solarsoft/</u>

Some of the primary goals of the SSW system are: Provide a large reusable SW library Provide a system which is largely hardware-system and site independent Promote the use of certain standards which facilitate coordinated data analysis Promote an evolutionary environment Provide access to supporting ancillary data bases Provide a file-format independent analysis environment

Time series analysis, time conversions, time series plotting
Spectral fitting
Image and image cube (movie) processing and display
Solar image data routines (limb fitting, image and grid overlay, coordinate transformations, feature tracking, co-alignment...)
File I/O (generic binary, ascii, FITS...)
IDL data manipulation (structure, string, array, mathematics...)
WWW interface (html conversion, file conversions, EOPM handling, WWW server mode)

•WWW interface (html conversion, file conversions, FORM handling, WWW server mode)

similar: SunPy using python

SolarSoft - Solar data analysis

SolarSoft - Solar data analysis

SSW IDL SESSION pr_env,/sot Setup of environ. print, getenv('SOT_SSWDB_FG_CAL') variables ssw_path,/sot xdoc To find out xdoc,'fg_prep doc_library, '*FFT* about routines findpro,'fg_prep' X XDOC Version: 11 Current time: 18-Apr-2015 10:57:28.00 X fg_prep.pro Done Print Extract Reload New Window History Doc Only PRO fg_prep, input1, input2, index_out, data_out, darkdir=darkdir, user dark=user dark, Current search file: ig prep.pro Search Reset dark image=dark image, user dindex=user dindex, dark index=dark index, flatdir=flatdir, user flat=user flat, Found in: /Users/cfischer/ssw/hinode/sot/idl/fg/cal user findex=user findex, flat image=flat image, flat index=flat index. 5 no shiftpix=no shiftpix, shiftscale=shiftscale, no badpix=no badpix, no darksub=no darksub, Select from the following directories/libraries no_flatfield=no_flatfield, no pointing=no pointing, tf_deripple=tf_deripple, /Users/cfischer/ssw/iris/idl/uio/objects redspot=redspot, doppler=dopple /Users/cfischer/ssw/iris/idl/uio/al polarcal=polarcal, /Users/cfischer/ssw/iris/idl/uio/utils despike=despike, nofloat=nofloat, /Users/cfischer/ssw/iris/idl/uio x0=x0, x1=x1, y0=y0, y1=y1, /Users/cfischer/ssw/hinode/sot/idl/atest subimgx=subimgx, subimgy=subimgy, center=center. /Users/cfischer/ssw/hinode/sot/idl/ct nodata=nodata, no calib=no calib /Users/cfischer/ssw/hinode/sot/idl/fg/ca original=original, /Users/cfischer/ssw/hinode/sot/idl/fa/util outdir=outdir, outflatfits=outflatfits, /Users/cfischer/ssw/hinode/sot/idl/sodasurf outfiletemplate=outfiletemplate, prefix=prefix, /Users/cfischer/ssw/hinode/sot/idl/sp/util qstop=qstop, /Users/cfischer/ssw/hinode/sot/idl/sp/util_Imsal quiet=quiet, verbose=verbose /Users/cfischer/ssw/hinode/sot/idl/sp display=display, run time=run time. version=progver, name=prognam Select from the following files fg get flat.pro ; NAME: fg_get_reg_coeff.pro FG PREP fg_image_type.pro fg_make_flat_chae.pro fg_noise.pro fg_num_eff_exp.pro Go To: Line Bottom Top fg_prep.pro fg_reg_wave.pro Case 💷 sensitive Find fg_rigidalign.pro fg_shift_pix.pro fg sum image.pro

Cursor Position: line

fg_waveid.pro

column [

Part I

Goode Solar Telescope (formerly New Solar Telescope)

http://www.bbso.njit.edu/~vayur/nst_requests/#data

Goode Solar Telescope (formerly New Solar Telescope)

Fast Imaging Solar Spectrograph Instruments Data FISS Guide Publications Partners Contact Us Home People **FISS Data Catalog** 2014-09-27 Previous | List | Next DATE: 2014/09/27 **INSTRUMENTS : FISS** OBSERVER : Yeonhan Kim OBS TIME : 16:36:51~18:00:50 TARGET: Sunspot POSITION : EXPTIME: 21.5sec OBSAREA: (41.0", 24.0") Go to BBSO Observing Log No Movie PCA compressed data (zip, 871MB) Cadence mean=28,7938 median=23,0000

http://fiss.snu.ac.kr/data catalog list.php

t0=FISS_20140927_163651_A1_c.fts

end=FISS_20140927_201317_A1_c.fts

Dunn Solar Telescope

NSC RESEARCH PROIECTS DATA ACCESS FOR PUBLIC GALLERY Home » Telescopes » Dunn Solar Telescope » DST Service Mode Contact dstservice@nso.edu **Overview** Between and January 2013 and October 2014, the Dunn Solar Telescope was used in "Service Service Mode Setup Mode". All data acquired during DST Service Mode Operations is made freely available to the scientific IBIS community. The data is made available for download via the NISP's ftp server. ROSA FIRS This process was repeated for 3 cycles. Data • Cycle 1: 15/01/2013 - 15/02/2013 FTP access • Cycle 2: 01/10/2013 - 31/10/2013 SMO Observations Log • Cycle 3: 01/10/2014 - 31/10/2014 Data Reduction Software Data Use Policy In this operational mode, the DST Service Mode Operations Team executed the observing programs according to proposal ranking and when best suited to the current solar and atmospheric conditions, without the principal investigator (PI) present. This provided scientists the opportunity to more easily obtain high-resolution observations from the DST.

https://www.nso.edu/telescopes/dunn-solar-telescope/dst-smo-2/

Service Mode Observation Log

Show 30	entries	Search:
Cycle	Observation Program ID Date	♦ Title ♦ PI ♦ Instruments Used ♦ Comments ♦
Cycle 1	January 18, 115 2013	Cycle Variations of Sunspot Rezaei, R. FIRS Sunspot ; Magnetic Fields Ieading polarity - Sunspot: NOAA 11658; Ieading polarity - Sunspot: NOAA 11654; following polarity
Cycle 1	January 19, 126 2013	Horizontal Dynamics of the Berrilli, F. IBIS - ROSA - FIRS North Pole; QS near the Limb HPA 0 deg; NE limb; HPA 40 deg
Cycle 1	January 19, 115 2013	Cycle Variations of Sunspot Rezaei, R. FIRS North Pole; Magnetic Fields HPA 0 deg; NF limb: HPA

https://www.nso.edu/

GREGOR telescope

From KIS pages http://www.leibniz-kis.de/

Back to main page Go to archive folder

HMI context The arrow in the box indicates the 'slit direction', the arrow outside the box the scanning direction. data: Blue (red) color of the box indicates that the GRIS scan is flipped in the scanning direction with respect to HMI (or not).

Please note that the coordinates ('x/y-pos') given in the GRIS preview images are those from the fits headers, so they are not necessarily correct.

02may14.001

02may14.004

http://archive.leibniz-kis.de/pub/gris/index.html

+ NEW searchable web interface http://sdc.leibniz-kis.de:8080/

GREGOR telescope

From KIS pages http://www.leibniz-kis.de/

gregor.aip.de News Instruments Observations Contact

GREGOR GFPI/BIC/HiFI Archive

This webpage provides access to the »quick-look« data products of GFPI (Levels 0.0 and 1.0), HiFi (Level 1.0), and B products requires registration. The website is under continuous development.

Here you can find our Data Policy.

Link to the observers list and observing logs (you have to be logged in).

2019

July GFPI Level 0.0: [10] [13] [14] [16] [17] [18] HiFI Level 1.0: [13] [14] [16] [17] [18]

June GFPI Level 0.0: [04] [05] [06] [07] [09] [11] [13] [14] [16] [19] HiFI Level 1.0: [02] [04] [06] [07] [09] [11] [13] [14] [16] [19] [20]

May HiFI Level 1.0: [06] [07] [10] [11] [13] [28] [29] [30] [31]

2018

December HiFI Level 1.0: [01] [02] [03] [04] [08] [09] [11]

October HiFI Level 1.0: [11] [12] [13] [15] [17]

August HiFI Level 1.0: [18] [19] [20] [24] [25]

lulv

https://gregor.aip.de/data/observations/

- GREGOR
- SST (Swedish 1-m Solar Telescope)
- THEMIS
- VTT

Solarnet Access time: First call for proposals 2019

Published on Friday, 14 December 2018 14:20

SOLARNET Access Time: First call for proposals 2019

🚔 🖃

Proposals are hereby invited under the SOLARNET Trans-National Access Programme for observing time at GREGOR, SST, THEMIS, and VTT.

This call also includes observing time in the <u>International</u> <u>Time Program (ITP)</u>. Proposals will be handled by the EAST TAC, a common European time allocation committee installed by the European Association for Solar Telescopes.

Typically, campaigns will be awarded for 10 observing days at each telescope. SOLARNET campaigns also include travel grants for going to the telescope.

In 2019, the SST will provide some of its time in service mode, thus not requiring visits by the investigators.

Certain criteria of eligibility related to the nationalities of the applicants apply. Data acquired in the SOLARNET Access Programme will become public one year after being delivered to the PI. Information on instrumentation and proposal details are available at the telescope web pages:

- Spanish and International time time open to all
- German time from KIS open to all if at least one Co-I from KIS, has been twice a year

Observing Season and applications for observing time

General Info

Due to changes in setup and instrumentation, the observing season 2019 is split into two halves: April - beginning of August and from mid August - end of November, 2019. The call for proposals is closed for 2019. The next call for 2020A may be expected in ~December 2019.

GREGOR Observing plan 2019 (updated Jun 23, 2019): GREGOR_obs_plan_2019.pdf

Options for telescope access

CCI international time program (ITP):

5% of the telescope time are reserved for international access to all solar telescopes on the Canary Islands (GREGOR, VTT, THEMIS). The observing time is assigned by the EAST TAC. Anybody apart from the operator of each telescope can apply for observing time (e.g. KIS cannot apply for GREGOR or VTT time). Contact Dan Kiselman or Lucia Kleint for more information.

Spanish time (solar CAT)

See www.iac.es/OOCC/solar-cat/ for more information. According to international agreements, 20% of the observing time is reserved for assignment by the Spanish solar CAT. Presently, there are no restrictions on nationality to apply for GREGOR and VTT time through the solar CAT.

SOLARNET time

A total of 40 days (GREGOR) or 20 days (VTT) are available for SOLARNET observers in 2019. The observing time is assigned by the EAST TAC.

German time

(split 20%/20%/60% between the **AIP**, **MPS**, and KIS, leading to effective observing times of 15%/15%/45% of the total available time). Each institute has guaranteed observing time at GREGOR and VTT. KIS decided to open their observing time with no restriction on nationality/institute provided that at least one Co-I on the observing proposal is from KIS. Contact **tac@leibniz-kis.de** for more information.

- Two calls a year
- Service mode possible

Two Proposal Submission Deadlines

- 15 March 2019 for Session 1 (April 15 June 30)
- 24 May 2019 for Session 2 (July 1 31 and September 15 October 31)
- 1. Time windows available for 2019: April 15 July 31 and September 15 October 31.
- 2. For information on GST and BBSO, please visit <u>http://bbso.njit.edu</u>.
- 3. For instrument information feel free to contact Prof. Wenda Cao at wcao@bbso.njit.edu.
- 4. Final decision on telescope allocation for session 1 and session 2 will be made no later than April 5 and June 21, 2019, respectively, by the BBSO Telescope Allocation Committee (TAC). High priority may be given to PIs who produced good scientific results from previous observations, to proposals with scientifically challenging and achievable objectives, and to observing proposals involving coordinated observations with other observatories.

Make sure to submit your proposal before the deadlines.

Qualified internal and external applicants:

- 1. *Internal applicants* refers to the scientific staff residing at BBSO, scientists and students in NJIT's Center for Solar-Terrestrial Research, and BBSO partners.
- 2. *External applicants* refers to scientists and students from institutes or universities in the USA recognized by NSF or NASA.
- 3. The PI (principal investigator) must have a Ph.D. degree or be a Ph.D. student with the supervisor as the Co-I (co-investigator).

DKIST Critical Science Plan (CSP)

- Science Use Cases (S)UC submitted online, reviews by Science Working Group
- Calls in first phase, should be open

Critical Scie	ence Plan: Us	e Case (UC) Development	t / UC-1	19							1	l of 1	^	×	
Fine-str	ucture an	d evolut	ion of the c	convect	tive collaps	e process					ł	letu	rn to	sea	rch	
🖋 Edit	Comment	Assign	Ready For F	Review	Stop Progress						Ľ	2	\mathbf{T}	•	**	
Туре:	I	 Science 	Use Case	Status	:	ACTIVE (Vie	ew workf	low)	Assignee:	CF	Catherir	າe Fi	ische	er		
Priority:		➢ Minor		Resolu	ition:	Unresolved			Penorter.	CE	Catherir	no Fi	ische	r		
Labels:	Labels: CSPW-Freiburg						Reporter.	Cathenne Fischer								
									Principal Catherine Fisc					her		
GENER	GENERAL INFORMATION SCIENCE JUSTIFICATION OBSERVATION SPECIFICS					investigator.										
TARGET S	TARGET SPECIFICS INSTRUMENT SPECIFICS					Additional Users to F-mail:	elena.khomenko, (3)									
PI Affiliation	n: ł	Kiepenheue	er Institute for S	Solar Phys	sics				Vetee							
Abstract:									votes:	0						
 Previou 	sly ignored, w	ve now kno	w that the quie	t-sun mag	gnetic fields				Watchers:	6	Stop wa	tchi	ng th	is is	sue	
outside at any c	of sunspots a viven time. Th	are omnipre	esent and cove	Click to edit	ne solar surface	e										
required	d to maintain	the hot cor	ona but are als	o for exar	nple the main				Created:	16/Ja	an/18 10:	46 F	M			
contribu	utor to the so	lar UV irrad	liance variabilit	y influenc	ing our	ile Oeure en iet			Updated:	29/A	pr/19 12:	29 F	РМ			
sun ma	on earth. we gnetic field po	propose to opulation.	o study the pro	cess that	generates the k	lioGauss quiet-	-									
This pro	ocess, the so-	-called con	vective collaps	e, is a					Development							
very dy	very dynamic process with sudden changes in, for example, densities, magnetic field							Create branch								
conspic	cuous oscillati	ions seen ir	n the physical p	arameter	s in the magnet	ic element are										
open qu	uestions in the	e														
descrip	tion of this fu	ndamental e need to m	process. To ide	entify mor all-scale (reover the changes in the c	liameter of the	se									
magnet	ic elements, a	and need to	go below 50 l	km in spat	tial resolution su	ich as we will b	e									
able to	obtain with D	KIST.														
i ne sug evolutio	ggested scien on of this kilo(ice use cas Gauss magr	e will contribut netic field popu	e to unde Ilation, fro	rstanding and c om formation to	destruction. Th	ne nis									
is crucia	al in the	-3														
calculat	tion of the ove	erall magne	etic flux budget	and estin	nating their con	tribution to the										

https://nso-atst.atlassian.net/secure/Dashboard.jspa

The Proposal - typical template

Observing days are expensive! Example GREGOR: Including all expenses also for maintenance 4451 Euro a day

Telescope time usually oversubscribed

Read the manuals. Contact instrument team early on.

The Proposal - typical template

Science case	What will be observed, why new/important Timeliness and impact, Why this telescope, why now? Why is this work relevant to current state of the art?
Observing strategy	Target Which lines for what purpose Which Instruments (has to be possible and consistent) Priorities
Analysis strategy	Codes used for analysis Already similar analysis done before show results
Instrument specifics	Target, Duration, wavelengthpoints, repetitions, accumulations,

The Proposal - setting priorities

Starts with a clear science case: What questions do I want to answer? Be precise. What type of data would I want ideally? What is my priority?

Observations always trade-off between spatial, spectral, temporal wishes

Taking data takes time and reaching a required S/N takes time.

http://www.leibniz-kis.de/en/institute/pictures-of-the-month single-view/first-observations-with-zimpol-at-gregor/

Ex: GRIS @ GREGOR polarimetric scan of sunspot 30 minutes

http://archive.leibniz-kis.de/pub/gris/ web/2015/09/15/20150915.html 15sep15.001 1565 nm 08:10:06-09:07:18 UT 60.0 ms / 10 accum. # of steps: 800 x/y-pos: -22" / -499"

Large FOV at once (example GFPI at GREGOR 50 arcsec to 38 arcsec)

Need time to scan spectrally, few points (few tens of seconds), need to be faster than solar evolution (change in flows in the atmosphere, movement magn. elements)

IBIS webpage

Example: Timing equation VTF

$$T = \{ [n_k \cdot (t_e + t_s) \cdot n_j + t_w] \cdot n_l + t_f \} \cdot n_f$$

Default values:

<u>n</u> _k = 8	(1 - 12, number of repetitions)
<u>n</u> _i = 4	(Fixed, polarization states)
<u>n</u> l =12	(9 - 15, depending on line)
n _f = 1, 2, 3	(Number of prefilters in obs. task)
<u>t_e = 25 <u>ms</u></u>	(Exposure time)
<u>t</u> _s = 8.4 <u>ms</u>	(Modulator switch time)
<u>t_w = 33.4 ms</u>	(Etalon tuning time, =0, if n _l =1)
<u>t</u> _f = 2000 <u>ms</u>	(Prefilter change time, =0, if <u>n</u> f=1)

Example: With 1 prefilter 12 wavelength positions and 8 repetitions: T = 13 s

Less to be fast More for better SNR

Multi wavelength?

Can not really safe anything when reducing as frame camera 30 Hz

courtesy of Wolfgang Schmidt

http://www.leibniz-kis.de/en/institute/pictures-of-themonth/single-view/gregor-the-sun-in-high-resolution/

Imaging: BBI, HiFI @ GREGOR Large FOV High spatial resolution High cadence -fast HiFI can be combined with GFPI/ GRIS

*No spectroscopy *No polarimetry

orschungsschwerpunkte/hochaufloesende-

spektropolarimetrie/

High spectral resolution

Only one spatial dimension need time to scan spatially

NEW Integral field Unit (IFU)

Best of both worlds!

Can also build mosaic

Combining instruments

- Clearly diagnostics should complement each other
- Which wavelength in which instrument?
- Do I loose important diagnostics if I combine instruments?
 Example GREGOR GFPI/GRIS Halpha, Ca IR
- What is my FOV overlapp? Timing of slit scan vs spectral scan?

Which spectral band, line(s)?

- Formation layers?
 Information for several "heights"
- Magnetic sensitivity?
- Important: do I have the tools to analyse the line?

Visible or Infrared?

VIS: Lower diffraction limit

IR: Increased magnetic resolution (splitting/broadening)

- splitting with lambda^2
- doppler broadening with lambda
- Are the required filters available?

Critical spectral sampling

FPI:

Usually prefilter (several) Angstrom FWHM (several) Etalons -> Total transmission curve 10⁰ 0¹ 0¹

Transmission at 630 nm line, Single Etalon, 0.15 nm Prefilter

Spectral resolution

$$R = \frac{\lambda}{\Delta\lambda}$$

Example IBIS/DST R=212 000 - 274 000

Example GFPI Dual Etalon achieved spectral resolution

Fig. 12 Spectral resolution \mathcal{R} as a function of wavelength λ based on the FWHM (solid) and equivalent width (dash-dotted) of the dual-etalon system.

PuschmannarXiv:1207.2084v1 [astro-ph.IM]

Ex.: lambda sampling IBIS/DST (past)

- Continuum point
- Core well enough sampled
- Wing in chromospheric lines
 ->additional photospheric information

Fel 6173:

Standard sampling: 6172.94, 6173.15, 6173.28, 6173.31, 6173.34, 6173.38, 6173.41, 6173.47, 6173.54, 6173.60.

Dense sampling: 6172.94, 6173.06, 6173.09, 6173.12, 6173.15, 6173.18, 6173.22, 6173.25, 6173.28, 6173.31, 6173.34, 6173.38, 6173.41, 6173.44, 6173.47, 6173.50, 6173.54, 6173.57, 6173.60, 6173.63.

Call 8542:

Standard sampling: 8540.20, 8541.07, 8541.68, 8541.90, 8542.03, 8542.12, 8542.21, 8542.29, 8542.38, 8542.73, 8543.60.

Dense sampling: 8539.77, 8540.20, 8540.64, 8541.07, 8541.51, 8541.68, 8541.86, 8541.90, 8541.95, 8541.99, 8542.03, 8542.08, 8542.12, 8542.16, 8542.21, 8542.25, 8542.29, 8542.34, 8542.38, 8542.56, 8542.73, 8543.17, 8543.60, 8544.04, 8544.47.

Spectral line shapes

S

When choosing range and wavelength points need to be aware of line shift/shapes, check atlas and/ or synthesize line before hand:

- High speeds?
- Also magnetic shifts -> infrared can be quite large in sunspots
- Bisector analysis?
- Unusual, asymmetric Stokes profiles?

Sigwarth et al. 2001

Sample VTF Observational requirements

MAGNETIC FLUX EMERGENCE AND DISAPPEARANCE

Science: Magnetic flux constantly emerges from the solar surface at different scales. It is crucial to understand the rate at which the magnetic flux emerges, interacts with opposite polarity and consequently dissipates, is expunged or submerged back into the sun. We need to understand the distribution of the magnetic field properties at emergence (strength, orientation, net unsigned flux), its content in active and quiet regions and their solar cycle dependence, and the plasma flows associated with the field. These observations will help develop understanding the rates at which the magnetic flux rises from buoyancy and by advection, how the magnetic field coalesces to the ubiquitous "kilo-gauss" style flux tubes and how the flux cancellation process takes place.

Observational Requirements: Spatial resolution of 35 km at the solar surface; Doppler velocity resolution of 75-150 m/s at the sun for bisector analysis; spectral resolution 3 pm. Different photospheric and chromospheric spectral lines to span a range of heights; Polarization calibrated LOS magnetograms for field-strengths in the range of 20-2000 G, Transverse magnetic fields > 50 G; FOV 30 > arcseconds.

MAGNETO-CONVECTION IN SUNSPOTS

Science: Sunspots are the largest and highest field strength magnetic structures visible in the The core magnetic fields of the sunspot umbra are now known to be highly structured formations with convection-like elements. Sometimes, light bridges appear within the umbra, they are thought to demarcate fracture lines along which sunspots eventually break up. Umbrae are surrounded by the filamentary penumbral magnetic fibrils, where dynamic flows and variations of angles within the penumbra are modulated by the local thermodynamics. Particularly in the case of the penumbra, we are yet to develop a clear model of how sunspots form, evolve, and disperse. Dark cores in penumbral filaments also remain unexplained. As with the magneto-convective flows in the photosphere, important insights about sunspot structures have come from MHD numerical simulations. Using the VTF we can address observational questions such as: What is the origin and dynamics of umbral dots? What mechanisms can trigger and sustain umbral and penumbral oscillations? What is the size distribution of penumbral filaments? What drives the photospheric and chromospheric Evershed flows? How are they linked?

Observational Requirements: Spatial resolution: 35 km on the sun; Temporal Resolution: 10-30 seconds; Temporal coverage: > 0.5 hours, continuously; Spectral Resolution > 150,000; Polarimetric accuracy: 10-2; FOV 1 arcminute; wavelength band: nonmagnetic line 557.6 nm, or 709.0 nm. *Multi-instrument mode:* VTF operated simultaneously with other spectroscopic instruments, covering the following spectral lines: MgI 517.2, FeI 557.6 nm, FeI 569.1 nm, HI 656.2 nm, NaI 587.6nm, nm, CaI 854.2 nm, FeI 868.8;

Co-Observing with satellites

Need to get in contact very early (ideally months before)

Coordination in Space and Time is tricky. Things to think about for example: Tracking on? How will my region move Slit scanning: Which solar direction is slit placed? Which way scanned?

During run need to take care of communication....

```
Please let IRIS planner ( iris_planner@lmsal.com ) confirm/know
your target information (QS disk center, OBS ID = 3600106829, tracking ?)
and observing duration, e.g., 12-17 UT.
Our deadline is:
- 15 UT on Thursday (tomorrow) for Friday observation
- 15 UT on Friday for this weekend observation from Saturday to Monday
- 15 UT on Monday for Tuesday obs.
- ...
```

Example "IHOP"

IRIS + Hinode Operation Plan (IHOP) Submission

Comments or questions about this form should be directed toward Sabrina . Savage (at) nasa . gov.

* Erforderlich

E-Mail-Adresse *

Ihre E-Mail-Adresse

Submission Guidance & Helpful Links

Planning for Hinode operations is performed on a three month cycle that is updated monthly. At the end of every month a monthly meeting is held to confirm the observations for the coming month and to lay out the broad objectives for the second and third months.

The cut-off for consideration is the 14th day of each month. For example, requests for observations received between the 15th of June and the 14th of July will be presented and discussed at the monthly meeting held at the end of July.

It is recommended that proposers make their submissions as early as possible, so that the Science Schedule Coordinators (SSCs) have time to refine the proposals to fit the current Hinode situation.

Late submissions may be considered only exceptionally, if scheduling conflicts can be easily resolved in the operation planning meetings.

For more detailed information, refer to the following:

http://www.isas.jaxa.jp/home/solar/guidance/index.html

http://hinode.msfc.nasa.gov/hops.html

Title of Proposed Observation *

Meine Antwort

Proposer name[s] * List primary proposer name first. Provide given name first.

Meine Antwort

Proposer email[s] * List primary proposer email first. (The email required above is for submission form correspondence.)

https://docs.google.com/forms/d/e/ 1FAIpQLSeQ0I38aMvCXFD-MJu_JXI-ekcV2qcAy6AI6hWgAHyGGNXNQ/viewform

Hinode

Launch date: 23-September-2006 Orbit: polar Sun synchronous, altitude = 600 km inclination = 97.9 Eclipse season: mid-May - August Nominal mission lifetime = 3 years Hinode is a Japanese/US/UK mission designed to investigate the Sun's generation of magnetic field, heating of the outer atmosphere, and initiation of flares and mass ejections. **SOT EIS XRT**

SOT-Solar optical Telescope

The Spectral-polarimeter (SP) obtains line profiles of two magnetically sensitive Fe lines at 630.15 and 630.25 nm and nearby continuum, using a 0.16"×164" slit.

The Narrowband Filter Imager till Feb. 2015

* intensity, Doppler, and full
Stokes polarimetric imaging
* 0.08 arcsec/pixel
* 10 lines spanning the
photosphere to the lower
chrom.

* 328" × 164"FOV

The Broadband Filter Imager till Feb. 2015

* 6 bands (CN band, Ca II H line, G band, and 3 continuum bands)
0.0541 arcsec/pixel
* 218" × 109" FOV.

Hinode

Science ready...but be aware

Data sometimes corrupted during download -> Large FOV with 0 pixel value.

http://www.uni-graz.at/~temmerma/hinode.html

• <u>Partial eclipse mid-May until August</u> - all instruments suffer due to atmospheric absorption effects (jitter, focus troubles, ...).

Be careful when analyzing data from this period. E.g. SOT might be 0.2-0.6" out of focus during ecplise season.

- SOT/BFI experienced chromatic aberration (vacuum focus turned out to be different from air focus in the lab):0.3-0.4" for particular wavelengtht.
- Do not use SOT Fe I 630.25 nm line for magnetograms (use Sodium instead).
- <u>SOT/NFI has air-bubbles or oil bubbles in filter</u>: a slow tuning of the filter is needed to keep bubbles out of FoV;

quick switch between major wavelength regimes might cause the bubbles to move;

- H-alpha filter has troubles with tuning (4° too cold); granulation is seen in the center; wings are ok. This happened after the eclipse season, hence, differences in the data from 2006 and 2007 are seen.
- SOT G-band may have large slots of zeros (black blocks in images).
- There is a significant shift between SOT G-band and Ca images
- There is an offset between SOT and XRT of 0.6-1"
- XRT bakeout caused spots on the CCD.
- Offset between EIS CCD-A and CCD-B (x=2px, y=15-20px).
- Cross calibration between EIS and XRT is difficult.
- EIS has a lot of blended lines which are not useful for studies, and the degree of blending changes with the solar conditions.

Many ways to get Hinode data...

Hinode SDC (Science Data Center)

http://sdc.uio.no/search/form

Quick look IRIS data keywords display

Hinode DARTS archive, NAOJ https://darts.isas.jaxa.jp/solar/hinode/

Hinode EIS Archive (MSSL, UK) and so on...

Hinoc	le	Yohkoh
Observation Planning A Orbital Information A Daily Events SOT Plan SOT Planning KRT Plan SOT Planning Files • XRT Operations(member Operations(member	D DARTS/Hinode d Japanese Solar astronomical satellite (foll cedented quality observations with the on-bo <u>Center</u> (last update: Jan 30, 2019, release n s, calendar format interface (from Novembe	wing Hinotori and Yohkoh) launched on September 23, 2006 by the M-V rocket. Hinode will reveal heatin ard Solar Optical Telescope (SOT), X-ray Telescope (XRT) and EUV Imaging Spectrometer (EIS). (ES) 2006)

Tip: Hinode SP level1 +level2 (Inversions) at LMSAL

http://sot.lmsal.com/data/sot/level1d/

Hinode SOT, Courtesy NAOJ, LMATC, JAXA, NASA, MELCO, and HAO (SOT@LMATC)

Hinode-SOT Spectropolarimeter(SP) Data Product Description and Access

SOT/SP processing level definitions are:

Level 0

reformatted "raw" 4D data (spectral x spatial x 2 CCDSIDES x 4 Stokes parameters), individual FITS Level 1

calibrated 3D data (spectral x spatial x 4 Stokes parameters) ready for scientific analysis. These data a 20061110_130011 = yyyymmdd_hhmmss) outine Level 1 processing skips any files in which substant keyword Level 1D

quick analysis of the Level1 SP data to produce images of measures of the longitudinal and transverse Level 2

results of full Milne-Eddington inversion of the Level1 data, available as both FITS images of the inv

IRIS Interface Region Imaging Spectrograph

conversion $T \Rightarrow \log T$

6000	10000	20000	30000	6500	0	
3.78	4.00	4.30	4.48	4.8	4.81	
Ion	Wavelength [Å]	Dispersion $[m \text{\AA}]$ pix ⁻¹]	$\log T$ [log K]	Passband	CEB	
Mg II wing	2820	25.46	3.7-3.9	NUV	2	
О І	1355.6	12.98	3.8	FUV 1	1	
Mg II h	2803.5	25.46	4.0	NUV	2	
Mg II k	2796.4	25.46	4.0	NUV	2	
Сп	1334.5	12.98	4.3	FUV 1	1	
С п	1335.7	12.98	4.3	FUV 1	1	
Si IV	1402.8	12.72	4.8	FUV 2	1	
Si iv	1393.8	12.72	4.8	FUV 2	1	
O IV	1399.8	12.72	5.2	FUV 2	1	
O IV	1401.2	12.72	5.2	FUV 2	1	
Fe XII	1349.4	12.98	6.2	FUV 1	1	
Fe xxi	1354.1	12.98	7.0	FUV 1	1	

Spectrograph (SG): passing through a slit that is 0.33 arcsec wide and 175 arcsec long, onto a grating that is sensitive in both FUV and NUV passbands, then onto 3 CCDs to produce spectra in three passbands

Slitjaw

FOV 175x175 arcsec^2

Pixelsize 0.166 arcsec

http://www.lmsal.com/heksearch/

Solar Dynamics Observatory SDO

http://hmi.stanford.edu/

HMI

AIA

HMI is an instrument designed to study oscillations and the magnetic field at the solar surface, or photosphere.

* full solar disk at 6173 Å with a resolution of 1 arcsecond

http://aia.lmsal.com/

The Atmospheric Imaging Assembly (AIA)

* images with at least 1.3 solar diameters in multiple (E)UV wavelengths nearly simultaneously

* at a resolution of about 0.6 arcsec pixel size and at a cadence of 10 seconds or better.

EVE <u>http://lasp.colorado.edu/home/eve/</u>

EVE measures the solar extreme ultraviolet (EUV) irradiance with unprecedented spectral resolution, temporal cadence, accuracy, and precision.

SDO - Solar Dynamics Observatory

https://www.lmsal.com/get_aia_data/

Our observing proposal

GREGOR observing proposal First call 2020

Topic within QUEST (QUiet-sun Event STatistics)

The **QUEST** project aims to characterise quiet-sun events involving the small-scale magnetic field using statistical analysis of multi-wavelength and spatially and temporally diverse data sets. Our goal is to follow, for e.g., magnetic flux emergence, flux cancellation, and magnetic intensification events...

Quiet sun events

Magnetic flux removal

Reconnection above photosphere

Siphon flows

Horizontal field transients

Convective collapse

And so on...

Our observing proposal

https://tinyurl.com/obspropsonetschool

1 Title of Project:

2 Applicants

Principal Investigator: Affiliation: Email address: Co–Investigators(s): Affiliation(s): Email address(es):

3.1 Scientific Relevance

3.2 Previous data

4 Observing requests:

Setup requested:

(For 2019B, the possible setup is

- GRIS: IFU (image slicer) spectropolarimetry at wavelengths 1.0-1.3 or 1.5-1.8 microns or

- GRIS: slit spectropolarimetry at wavelengths 1.0-1.3 or 1.5-1.8 microns

- Fast context imaging. Wavelengths below 900 nm (if not using GFPI) or wavelengths below 480 nm (if using GFPI). Specify any required filters. If using wavelengths above 650 nm for context imaging, be aware that the H-alpha SJ channel will not get any light.

- GFPI: available in spectroscopic (not polarimetric) mode and only in collaboration with AIP. Please contact them before proposal submission.

- Please state whether you plan to use the SJ imaging system.

If applicable, describe any non-standard setup. Please also list the foreseen observing mode (FOV, exposure times, duration of raster, required S/N, targets, ...))

Coordinated observations:

Impossible dates:

Our observing proposal

https://tinyurl.com/obspropsonetschool

Our observing proposal -Co-observing

Hinode SP Number of Slitposition and cadence

Data volume?

Target? Tracking?

IRIS

Number of Slitposition (Raster positions) Target? Tracking? Roll angle?

Stepsize 0.35,1,2 arcsec Linelist, SLJ -> **OBSID**

New! ITN 50

OBS ID parent	Description		
0-100	Basic raster type (sit-and-stare, rasters,)		
0-2,000	SJI choices		
0-14,000	Exposure times		
0-220,000	Summing modes (applied to FUV, NUV, SJI)		
0-500,000	FUV summing modes		
0-4,000,000	SJI cadence		
0-5,000,000	Readout method (simultaneous, non-simultaneous)		
0-10,000,000	Compression choices		
0-80,000,000	Linelists		
3.6-4 billion	OBS table generation number		

Observations: Medium sparse 4-step raster with 1400, 2796, 2832 slitjaws

OBS-ID: 3600258819

https://tinyurl.com/obspropsonetschool

Part II

Alignment - Issues, choices

- Standard for definition in files <u>http://fits.gsfc.nasa.gov/fits_home.html</u> The FITS standard
- Coordinates can be off by several arcsec, gb Telescopes seeing, space based -jitter
- Not yet standard in gb data to write conform headers for data
- Internal alignment of instruments
- Example IRIS:
- Slitjaw images slit fidicual

Issues

Which time? Which Coordinates? - also congrid issues Which data as reference data? -> taking care of slit etc. Which wavelength show the same features? What can I cross-correlate?

Alignment - Issues, choices

See tutorial by Luc Rouppe van der Voort, IRIS 9 meeting

Which wavelength compatible for crosscorrelation? Exampels

Exampels:

azimuth ambiguity.

Image co-alignment is necessary for comparing images taken at different times, or at differing wavelengths. When we investigate the relationship between the bright features seen in Ca II H (using the BFI) and the photospheric magnetic fields (using the SP), we determine their relative alignment using an image cross-correlation technique. We cross-correlate the continuum intensity map from the SP with the G-band image taken at the time of midpoint of the closest SP observation. The alignment of the various datasets was carried out as follows. First, the IRIS slit-jaw images were compensated for solar rotation and scaled up to match the SST pixel size. We then aligned the IRIS and SST observations using prominent NE features and bright points in SST Fe I 6173 continuum intensity and IRIS SJI 2832 images. Since both channels practically show the same photospheric structures, the accuracy of the alignment is on the order of the IRIS pixel size. The other SST and IRIS channels were aligned to these two channels.

Alignment - Slit and Imaging

Takes time to "build" a map with the slit

Assemble G-band map according to slit position times

Shimizu et al. 2007

Practical Dataset 1

Searching for a flare....

https://solarflare.njit.edu/

IRIS flare list

IRIS Flare List (maintained by Kathy Reeves, Jakub Prchlik, and Hui Tian & supplemented by Ying Li)

NOTE: Highlighted Events have already been used for IRIS MOD as of 10/22/18

20131011 14:54 C4.7, Fe XXI, ribbon

- 20131012 01:57 C5.2, full frame spectra, many unidentified lines, Fe XXI
- 20131015 05:42-05:50 Fe XXI line observed, raster of ribbons
- 20131024 19:55 no GOES class, SJI only, two-ribbon flare
- 20131024 21:14 C3.3, slit on ribbons and loops after peak
- 20131024 22:10 C5.7, slit missed, SJI only
- 20131102 15:20-15:30 strong Fe XXI line, but no SJI images because of flight software problem
- 20131114 18:29-20:44 C2.2, flare ribbon
- 20131225 05:18-15:00 C1.1, limb eruptions, flare and surge, no SADs in AIA Fe XXI at 6:56 (raster 0) and 14:06 (raster 7)
- 20131225 21:53 flare at the edge of sunspot
- 20131229 23:45 no GOES class, slit on loops
- 20131230 02:43 no GOES class, loop brightening and plasma flows at bottom of SJI 20131230 08:04 no GOES class, SJI only
- 20131231 22:22 loops & footpoints from M flare visible in 1400 SJI images.
- 20140104 06:30 C5.6 flare. Nice 1400 SJI movie of footpoints, slit nowhere near them, though 20140105 02:24 C4.5 flare got footpoints
- 20140105 15:15 C6.6, ribbons, Fe XXI, good XRT data
- 20140105 18:13 C3.4, interesting loop brightening and flows at bottom of SJI
- 20140111 23:27:39-00:22:22 C6 raster 20 interesting rotation in CII, very weak Fe XXI, nice eruption in 1400 SJI images
- 20140127 23:22-00:16 Small eruption on the limb, no GOES class, maybe some Fe XII in raster 8 20140128 07:30 M3.6 One edge of the raster landed on the footprints. All kinds of crazy unidentified lines, lots of Fe XXI, ~150 km/s redshifts in the C II lines. Good one for analysis.
- 20140129 14:24 long duration C7 flare. Pointing is a little too far south. Some interesting ribbons, though.

20140130 00:09 C2 flare. SJI only.

- 20140202 11:35 Continuum enhancement starting at 11:35, observation ends at 11:42. Beginning of the C9.7 flare starting at 11:45? Interesting loop with brightening at top, right by slit.
- 20140202 16:12 interesting cuspy configuration outflows? Not the M1 flare, which was in a different active region.
- 20140202 19:32 eruption in AR 11968, mostly seen in SJIs. 64 step raster, full spectrum.
- 20140202 21:24 M1.3 flare caught beginning during a 64 step raster, slit on ribbons. Full spectrum. 20140203 C6.5 at 13:22 IRIS gets rise. Being analyzed by Polito, Reeves, del Zanna, Mason.
- Fascinating XRT data with what look like null points.
- 20140204 11:54 C5.9 flare, interesting loops, sit'n'stare
- 20140204 15:30 M1.5, 64 step raster, slit mostly on western ribbons, missed some loops.
- 20140204 18:49 C4.7 flare, got some of the ribbons
- 20140205 16:20 M1.3, slit covers ribbon, Fe XXI visible
- 20140211 13:40 C8 flare, slit on some ribbons.
- 20140211 16:47 M1.8 flare, slit nicely on ribbons. No obvious Fe XXI.
- 20140212 23:05 C5.9, ribbon, Fe XXI, 400 km/s blue shift of cool lines

20140213 01:36 M1 8 ribbon loops nice eruption

https://iris.lmsal.com/data.html

Event Details

IRIS		Where	Rast	er
2013-12-31T22:20:34 - 2013-12-31T23:14:18		Flarewatch with Hinode OBS 3860257480		
		x, y: 497", -219" Max FOV: 133" x 119" Target: AR	FOV: 14" Steps: 8 Step Ca Raster Ca 76	x 119" " x 2" d: 5.3 d: 42s ,
		I	1	
	SJI	wavel: cadence, # images	Data	Links
			Anno	otate
	F(1400 2796	OV: 119" x 119"): 0.2 min 303 imgs): 0.2 min 303 imgs	1400 2796 Raster	209 MB 198 MB 784 MB

Downloaded to iris DATASET1

HINODE flare list

	GOES			AB location	Y-ray class	SOT		VDT		DADTO	DUESSI
Event number	start	peak	end	An location	A-ray class	FG	SP	AIT	LIO	DANIO	TITLOOT
120130	2015/01/25 11:56	2015/01/25 12:12	2015/01/25 12:21	S08E89	C1.4	0	0	0	0	2	6-12
096120	2013/12/31 21:45	2013/12/31 21:58	2013/12/31 22:20	S16W35	M6.4	180	4 🖸	159 🖬	4		50-100
096110	2013/12/31 19:49	2013/12/31 19:53	2013/12/31 19:56	S13W41	C2.9	0	5 🖸	4	0	✓	no
096100	2013/12/31 18:53	2013/12/31 18:59	2013/12/31 19:03	S13W41	C4 @	18 🖬	6 🖸	79 📑	1		6-12
096090	2013/12/31 18:20	2013/12/31 18:25	2013/12/31 18:31	S16W16	C1.8	0	з 🕑	0	0		no
096080	2013/12/31 16:42	2013/12/31 16:49	2013/12/31 16:55	S13E16	C2.0	0	0	0	0		no
Flare	Event II	D: 09612		https:// HINODEE Update Search Res Instruments SO Plot No Image Basic Condition Start 2013 / 12 (MSU] XRT Synoptic Composite 1 go to top of this parts Snacocroft	/darts.isas Search Condi set VT-FG SOT-SP XRT EIS Time & Region Time(Lar Servation Time Servation Time S	S.jaxa tions ge) Region(Lar) X(arcsec) X RANGE	-jp/so ge) Switch to Advan Target Positi Y(ar Y RA	ced Condition COMMON	inod	e/quer	y.php

hinode in DATASET1

SolarMonitor

https://www.solarmonitor.org/

SolarMonitor for 31.12.2013

SolarMonitor for 01.01.2014

	Today's	/Yesterd	lay's NOA	A Active Re	egions	
NOAA Number	Latest Position	Hale Class	McIntosh Class	Sunspot Area [millionths]	Number of Spots	Recent Flares
11931	S14W91 (946",-236")	α/α	Hax/Hsx	0130/0110	01/ 01	-
11934	S17W78 (913",-274")	βγδ/ βγδ	Eac/Esc	0140/0160	09/17	-
11936	S16W32 (498",-228")	βγδ/βγ	Eac/Eac	0180/0170	28/30	C5.6(02:29) / C1.7(17:41) C2.4(16:38) C2.3(15:09)
11937	S12W05 (83",-154")	β/β	Bxo/Bxo	0010/0010	03/03	-
11938	S09E12 (-201",-104")	α/β	Hax/Cao	0050/0060	02/03	-
11935	S06W63 (866",-79")	1	1	1	1	-
11939	S06W91 (969",-102")	/β	/Вхо	/0010	/05	-
	Today's	Yesterd	lay's NOA	A Active R	egions	
				Supopot		
NOAA Number	Latest Position	Hale Class	McIntosh Class	Area	Number of Spots	Recent Flares
NOAA Number 11934	Latest Position \$16W91 (937",-269")	Hale Class βγδ/βγδ	McIntosh Class Eac/Eac	Area [millionths] 0080/0140	Number of Spots 05/09	Recent Flares -
NOAA Number 11934 11936	Latest Position \$16W91 (937",-269") \$16W48 (698",-235")	Hale Class βγδ/βγδ βγδ/βγδ	McIntosh Class Eac/Eac	0280/0120	Number of Spots 05/09 36/28	Recent Flares - M9.9(18:40) / M6.4(21:45) C2.9(19:49) C4.0(18:53) C1.8(18:20) C5.6(02:29)
NOAA Number 11934 11936 11937	Latest Position \$16W91 (937",-269") \$16W48 (698",-235") \$12W21 (343",-154")	Hale Class βγδ/βγδ βγδ/βγδ	McIntosh Class Eac/Eac Eac/Eac Bxo/Bxo	Sunspor Area [millionths] 0080/0140 0280/0100	Number of Spots 05/09 36/28	Recent Flares M9.9(18:40) / M6.4(21:45) C2.9(19:49) C4.0(18:53) C1.8(18:20) C1.8(18:20) C5.6(02:29)
NOAA Number 11934 11936 11937 11938	Latest Position \$16W91 (937",-269") \$16W48 (698",-235") \$12W21 (343",-154") \$09W03 (50",-100")	Hale Class βγδ/βγδ βγδ/βγδ α/α	McIntosh Class Eac/Eac Eac/Eac Bxo/Bxo Hax/Hax	Sunspor Area [millionths] 0080/0140 0280/0190 0010/0010 0030/0050	Number of Spots 05/09 36/28 03/03 03/02	Recent Flares M9.9(18:40) / M6.4(21:45) C2.9(19:49) C4.0(18:53) C1.8(18:20) C1.8(18:20) C5.6(02:29) - - / C2.0(16:42)
NOAA Number 11934 11936 11937 11938 11940	Latest Position \$16W91 (937",-269") \$16W48 (698",-235") \$12W21 (343",-154") \$09W03 (50",-100") \$12W56 (792",-174")	Hale Class βγδ/βγδ βγδ/βγδ α/α β/-	McIntosh Class Eac/Eac Eac/Eac Bxo/Bxo Hax/Hax Dro/	Sunspor Area [millionths] 0080/0140 0280/0130 0010/0010 0030/0050 0020/	Number of Spots 05/09 36/28 03/03 03/03 03/02 04/	Recent Flares M9.9(18:40) / M6.4(21:45) C2.9(19:49) C4.0(18:53) C1.8(18:20) C5.6(02:29) -/ C2.0(16:42) C3.2(07:21) /-
NOAA Number 11934 11936 11937 11938 11940 11941	Latest Position S16W91 (937",-269") S16W48 (698",-235") S12W21 (343",-154") S09W03 (50",-100") S12W56 (792",-174") S13W34 (533",-177")	Hale Class βγδ/βγδ βγδ/βγδ α/α β/- β/-	McIntosh Class Eac/Eac Eac/Eac Bxo/Bxo Hax/Hax Dro/ Dro/	Sunspor Area [millionths] 0080/0140 0280/0100 0010/0010 0030/0050 0020/ 0030/	Number of Spots 05/09 36/28 03/03 03/02 04/ 03/	Recent Flares M9.9(18:40) / M6.4(21:45) C2.9(19:49) C4.0(18:53) C1.8(18:20) C5.6(02:29) -/ C2.0(16:42) C3.2(07:21) /-
NOAA Number 11934 11936 11936 11937 11938 11940 11941 11942	Latest Position S16W91 (937",-269") S16W48 (698",-235") S12W21 (343",-154") S09W03 (50",-100") S12W56 (792",-174") S13W34 (533",-177") N10E50 (-737",203")	Hale Class βγδ/βγδ βγδ/βγδ β/β α/α β/- β/- α/-	McIntosh Class Eac/Eac Eac/Eac Bxo/Bxo Hax/Hax Dro/ Dro/ Hrx/	Sunspor Area [millionths] 0080/0140 0280/0130 0010/0010 0030/0050 0020/ 0030/ 0020/ 0020/	Number of Spots 05/09 36/28 03/03 03/02 04/ 03/	Recent Flares M9.9(18:40) / M6.4(21:45) C2.9(19:49) C4.0(18:53) C1.8(18:20) C5.6(02:29) -/ C2.0(16:42) C3.2(07:21) /- -

Event#	EName	Start	Stop	Peak	GOES Class	Derived Position
5	gev_20131231_2145	2013/12/31 21:45:00	22:20:00	21:58:00	M6.4	<u>S15W36</u> (1936)

JHelioviewer

JHelioviewer

X-ray flux

SSW IDL SESSION

×

Downloaded to sdo_hmi DATASET1

Reading Data

CDELTn	COMMENT: coordinate increment along axis DEFINITION: The value field shall contain a floating point number giving the partial derivative of the coordinate specified by the CTYPEn keywords with respect to the pixel index, evaluated at the reference point CRPIXn, in units of the coordinate specified by the CTYPEn keyword. These units must follow the prescriptions of section 5.3 of the FITS Standard.	
DATE_OBS	COMMENT: date of the observation DEFINITION: The date of the observation, in the format specified in the FITS Standard. The old date format was 'yy/mm/dd' and may be used only for dates from 1900 through 1999. The new Y2K compliant date format is 'yyyy-mm-dd' or 'yyyy-mm-ddTHH:MM:SS[.sss]'.	
CUNITn	COMMENT: coordinate increment along axis DEFINITION: The value field shall contain a floating point number giving the partial derivative of the coordinate specified by the CTYPEn keywords with respect to the pixel index, evaluated at the reference point CRPIXn, in units of the coordinate specified by the CTYPEn keyword. These units must follow the prescriptions of section 5.3 of	
	the FITS Standard.	SSW IDL
		SESSION
<pre>read_sdo,'./sdo_</pre>	hmi/hmi.ic_45s.2013.12.31_22_26_15_TAI.continuum.fit	<pre>s',indexsdocont, \$</pre>
datasdocont		
help,indexsdocon	it,/str	
print, indexsdo	cont.cunit2	

DATE_OBS	STRING	'2013-12-31T21:40:09.10'
CDELT1	DOUBLE	0.50428700
CDELT2	DOUBLE	0.50428700

Same for read_sot

...

Viewing IRIS Data

Many excellent tutorials available

Useful Programs:

find_closest Finds the subscript of closest value v in array

tim2dset Given a structure (roadmap or index), find the dataset with the time closest to an input time. anytim This function converts one of several recognized time formats into the selected output format.

```
read_iris_l2,'./iris/
iris_l2_20131231_222034_3860257480_SJI_2796_t000.fits',indexiris2796,datairis2796
timesiris=indexiris2796.date_obs
timesdo=indexsdocont.date_obs
s2=find_closest(anytim(timesdo,/tai),anytim(timesiris,/tai))
print,timesiris[s2]
print,timesdo
```

Reading Data

An IDL map is a structure that contains two-dimensional (2-d) image data with accompanying pixel coordinate and spatial scale information.

Create maps:

index2map (map2index) fits2map (map2fits)

\$SSW/gen/idl/maps This directory contains a package of image mapping and co-alignment software.

Tutorial:

http://www.sipwork.org/idl-map-software-for-analyzing-solar-images/

make_map	create your own maps
scale_map	scale a map in x- and y-directions by changing pixel spacings
grid_map	regrid an image map
shift_map tra	anslate a map in x- and y-directions by moving
i	it's centroid
movie_map	make movie of series of map images
and so on	

Reading Data

SSW IDL SESSION

fits2map,'./sdo_hmi/hmi.ic_45s.2013.12.31_22_26_15_TAI.continuum.fits',cont_hmimap
plot_map,cont_hmimap

cont_hmimap=rot_map(cont_hmimap,cont_hmimap.roll_angle)
plot_map,cont_hmimap

read_sot,'./hinode/FG20131231_222550lev1.fits',indexsotfg,datasotfg indexsotfg.wave fits2map,'./hinode/FG20131231_222550lev1.fits',gband_sotmap plot_map,gband_sotmap sub_map,cont_hmimap,smap_cont_hmimap,ref_map=gband_sotmap window, xs=1000, ys=500 !p.multi=[0,2,1] plot_map, smap_cont_hmimap plot_map,gband_sotmap !p.multi=0

Alignment Useful Programs

Shifts corshft_sbsp find the shift between line 1 and line 2 by correlation sub-pixel accuracy with polynomial interpolation

fshft_sbsp shift array line by non-integer pixel shift sh by fourier
 or linear interpolation; uses wraparound for ends

correl_optimize Find the optimal (x,y) pixel offset of image_B relative to image_A

Rotation

	rotate	The ROTATE function returns a rotated and/or transposed copy of <i>Array</i> . ROTATE can only rotate arrays in multiples of 90 degrees.
Cooling	rot	To rotate by amounts other than multiples of 90 degrees, use the ROT function.
Scaling	rebin congrid frebin expansion that each	REBIN requires integral factors of the original image size. Shrink or expand the size of an array by an arbitrary amount. FREBIN is an alternative to CONGRID or REBIN. Like CONGRID it allows or contraction by an arbitrary amount. Like REBIN it conserves flux by ensuring input pixel is equally represented in the output array.

Alignment

Alignment using shift for a time series align_cube_correl

Alignment using shift,rotation,scaling and opt. general warping <u>METCALF ROUTINES</u>

auto_align_images used in for example trace_mdi_align. Can take long!

Example:

inew=auto_align_images(transformed_image,reference_image,pin,qin,pout,qout)

Need very good first guess!

;NAME:

;	AUTO_ALIGN_IMAGES
;PURPC	DSE:
;	Align arbitrary images using a cross correlation. This routine is
;	particularly useful for images from different instruments in which
;	a very general transformation between the two images is required.
;	Don't use this routine if you only need to shift the two images on
;	top of one another. It'll work, but it will be much slower than
;	you need.
;	you need.

rss2pq Given a rotation, shift and scale change, returns the p and q variables used in poly_2d to warp images.

pq2rss Converts the P and Q variables in a call to poly_2d into a rotation, scale change, and shift.

Alignment

Just taking the submap from before and congridding. Result:

SSW IDL SESSION

help,smap_cont_hmimap.data help,gband_sotmap.data newgb=congrid(gband_sotmap.data,443,222) window,xs=443,ys=222 tvscl,newgb window,2,xs=443,ys=222 contsdo=smap_cont_hmimap.data tvscl,contsdo blink,[0,2]

Finetuning:

Setpts,pp,contsdo,newgb
tt = caltrans(pp)

SSW IDL SESSION

Alignment

New transformed image

rotation = 0.167860 degrees
scale x = 1.01772
scale y = 1.01854
shift x = -4.48291
shift y = -0.545593

AR ????? GB data

(1) Get an overview of the active region

(2) Look for co-observations (no data download)

https://www.solarmonitor.org/ JHelioviewer

IRIS/ HINODE https://iris.lmsal.com/data.html http://sdc.uio.no/sdc/

Folder DATASET2 dataset2/gfpi/

Data_gfpi_12-08-2014.sav

Contains

BB_TS A broadband image from line scan
DATE_OBS The times of the observations
NBCORE_TS A Narrowband image in the core of the line
CDELT1 GFPI Pixel size
CDELT2 GFPI Pixel size

scannb_080935.sav Contains

Example BB_TS image

Need to rotate(image,7)

NBSCAN A Narrowband scan through the line with 8 accumulations per wavelength point

DATASET2 CONTENT FOR AR 12135

DATASET2 CONTENT FOR AR 12135

Download Need to: Run fg_prep with despike -> Obtain level 1 fits files Make FG los magnetograms OR Download level 1 products from http://sot.lmsal.com/data/sot/level1d/

Folder DATASET2 dataset2/hinode/

Add fields:	Add field (*?[] allowed) Grouping:		rouping: Fine	CEXPAND to group:	CRows/page: 10	Thumbnails	
Select All:	Actions/ <u>N files</u>	S FILE	S INSTRUME	⊗ DATE_OBS▲	S_WAVE	<mark>⊗</mark> FOV/data images	
□≣ <u></u> ≵?≛	∓ ¥61	FG20140812_101532.4 💌	SOT/WB	2014-08-12 10:15:32 -	Ca II H line		
□≣ <u></u> ≵?≛	τ μ [1] 13	FG20140812_070454.6	SOT/WB	2014-08-12 07:04:54	G band 4305		•
□≣ <u></u> ≵?≛	τ φ [4] 26	FGMG4_20140812_070430.8	- SOT/NB	2014-08-12 07:04:30 -	TF Na I 5896		
□≣ <u>∔</u> ?≛	∓ 23 127	FG20140812_070427.5 V	SOT/WB	2014-08-12 07:04:27 -	Ca II H line		
□≣¥?⊅	∓ 23 64	FG20140812_053129.2 V	SOT/WB	2014-08-12 05:31:29 -	Ca II H line		
	5-2 64	W020140812 034628 9 -	SOT /WB	2014-09-12 03:46:28 -	Ca II H line		

DATASET2 CONTENT FOR AR 12135

Download from http://www.lmsal.com/heksearch/

Folder DATASET2 dataset2/hin_sdo_ir_aligned/

+ SDO_1600_1700 in dataset2/sdo_aia_cutout/

"Similarly, Hinode/SOT and IRIS images are co-aligned using their respective header information. For these co-aligned datacubes, the headers of the Hinode/SOT images are updated with results from crosscorrelation between **SOT Ca II H images with the AIA 1700** Å **channel.** This co-alignment does not always work perfectly, errors up to 10-15 arcsec ar possible, but usually much less. As such, the coalignment between Hinode and IRIS data is not perfect due to uncertainties of the pointing information in the headers of the IRIS and Hinode/SOT data. The offsets can be up to about ± 5 arcsec in x and y directions for observations taken near the solar disk center and increase for observations recorded closer to the limb. Therefore, the cubes may need a small co-alignment tuning by the user. "

ITN 32

(4) Find interesting times/areas you want to look into, for example check the IRIS Slitjaw movie or Jhelioviewer (SDO HMI data is also available on the USB stick at 08.09 UT in **DATASET2/sdo_hmi**)

(5) See if you have co-observations

(6) Read in the data

(7) Extract for example submaps to compare

(8) Align for your chosen timestamp, for example, one of the co-observed Hinode SOT Gband images with one of the Broadband images of GFPI or other compatible wavelength, or the SDO HMI cont. with GFPI BB data

(4) Find interesting times/areas you want to look into, for example check the IRIS Slitjaw movie or Jhelioviewer (SDO HMI data is also available on the USB stick at 08.09 UT in **DATASET2/sdo_hmi**)

- (5) See if you have co-observations
- (6) Read in the data
- (7) Extract for example submaps to compare

(8) Align for your chosen timestamp, for example, one of the co-observed Hinode SOT Gband images with one of the Broadband images of GFPI or other compatible wavelength, or the SDO HMI cont. with GFPI BB data

(4) Find interesting times/areas you want to look into, for example check the IRIS Slitjaw movie or Jhelioviewer (SDO HMI data is also available on the USB stick at 08.09 UT in **DATASET2/sdo_hmi**)

- (5) See if you have co-observations
- (6) Read in the data
- (7) Extract for example submaps to compare

(8) Align for your chosen timestamp, for example, one of the co-observed Hinode SOT Gband images with one of the Broadband images of GFPI or other compatible wavelength, or the SDO HMI cont. with GFPI BB data

(4) Find interesting times/areas you want to look into, for example check the IRIS Slitjaw movie or Jhelioviewer (SDO HMI data is also available on the USB stick at 08.09 UT in **DATASET2/sdo_hmi**)

(5) See if you have co-observations

(6) Read in the data

(7) Extract for example submaps to compare

(8) Align for your chosen timestamp, for example, one of the co-observed Hinode SOT Gband images with one of the Broadband images of GFPI or other compatible wavelength, or the SDO HMI cont. with GFPI BB data

Alignment SDO - Hinode

GREGOR, image taken by HP Doerr

*QUEST PhD positions will be announced 30 August in solar news

Thank you for your attention