

BASICS OF DEP LEARNING

a. asensio ramos @aasensior github.com/aasensio

CONTENT

- Introduction
- Neural networks
 - Basics : supervised vs unsupervised, regression, classification, deep learning
 - Architecture of a neural network
 - > Types of neural networks: fully connected, convolutional, recurrent
 - Activation functions
 - Pooling
 - Residual connections
 - Batch normalization
 - Training
 - Loss functions and stochastic gradient descent
 - Backpropagation
- > Applications in Solar Physics and other fields
- Practical example

https://github.com/aasensio/solarnet19

Introduction

what is machine learning?

the focus of Machine Learning (ML) is to give computers the ability to learn from data, so that they may accomplish tasks that humans have difficulty expressing in pure code

REGRESSION

CLASSIFICATION

Cartesian coordinates

Polar coordinates

NATURAL NEURAL NETWORKS

ARTIFICIAL NEURAL NETWORKS

MARK I PERCEPTRON : FRANK ROSENBLATT

CONVOLUTIONAL NEURAL NETWORKS : YANN LACUN

CONVOLUTIONAL NEURAL NETWORKS : YANN LECUN

RANDOM PLAYER

TRAINED PLAYER

After 240 min of training

AI WINTERS

Brief History of Neural Network

1ST AI WINTER

2ND AI WINTER

DEVIEW

2015

BE PERSEVERANT

Yoshua Bengio Montreal University Yann LeCun Facebook+NYU **Geoffrey Hinton Google+Toronto**

but is deep learning really a hype?

AlexNet to AlphaGo Zero: A 300,000x Increase in Compute

https://blog.openai.com/ai-and-compute

Machine learning needs to fight the curse of dimensionality

HOW MUCH VOLUME CAN I FILL?

$$V(d) = \frac{\pi^{d/2}}{\Gamma\left(\frac{d}{2}+1\right)} \left(\frac{1}{2}\right)^d$$

The volume is on the borders!

Neural networks are specially suited to adapt to the data manifold

WHERE ARE WE NOW?

Brock et al. (2018)

Basics

CLASSICAL MACHINE LEARNING VS. DEEP LEARNING

Credits: freepik.com

CLASSICAL MACHINE LEARNING VS. DEEP LEARNING

Polar coordinates

WHY DEEP LEARNING?

NEURAL NETWORKS : INGREDIENTS

SUPERVISED TRAINING

Prediction, classification, regression, image2image, ...
UNSUPERVISED TRAINING

Clustering, feature extraction, generative models,...

Arquitecture of a neural network

THE BASICS : A NEURON

TYPES OF NEURAL NETWORKS

TYPES OF NEURAL NETWORKS

FULLY CONNECTED NEURAL NETWORK

 $N = N_{\rm in} N_{\rm hid1} + N_{\rm hid1} N_{\rm hid2} + N_{\rm hid2} N_{\rm out}$

CONVOLUTIONAL NEURAL NETWORK

$$N = N_{\rm in} N_{\rm ker} d_{\rm ker}^2$$

CONVOLUTION

STRIDE

W: volume size

$$\frac{W - K + 2P}{S} + 1$$

- K: kernel size
- P: zero padding

S: stride

1X1 CONVOLUTION

ACTIVATION FUNCTION

POOLING

MAX-POOLING

У

RESIDUAL CONNECTION

BATCH NORMALIZATION

Input: Values of x over a mini-batch: $\mathcal{B} = \{x_{1...m}\}$; Parameters to be learned: γ, β **Output:** $\{y_i = BN_{\gamma,\beta}(x_i)\}$ $\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^m x_i$ // mini-batch mean $\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2$ // mini-batch variance $\hat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}}$ // normalize $y_i \leftarrow \gamma \hat{x}_i + \beta \equiv BN_{\gamma,\beta}(x_i)$ // scale and shift

Algorithm 1: Batch Normalizing Transform, applied to activation x over a mini-batch.

loffe & Szegedy (2015)

BATCH NORMALIZATION

Wu & He (2018)

MULTISCALE ANALYSIS

Conv 1: Edge+Blob

Conv 3: Texture

Conv 5: Object Parts

dinning table grocery store

ENORMOUS LANDSCAPE

Output Dilation = 8

Hidden Layer Dilation – 4

Hidden Layer Dilation = 2

Hidden Layer Dilation = 1

Input

TWO RULES TO DECIDE THE ARCHITECTURE

Read a lot! Still not in books: arxiv!

Experiment a lot!

Training of a neural network

LOSS FUNCTIONS

 $L = \frac{\sum_{i=1}^{n} (y_i - \hat{y}_i)^2}{n}$

Mean squared error

Mean absolute error

$$L = \frac{\sum_{i=1}^{n} |y_i - \hat{y}_i|}{n}$$

Cross-entropy

$$L = -(y_i \log(\hat{y}_i) + (1 - y_i) \log(1 - \hat{y}_i))$$

TRAINING: USE THE SIMPLEST YOU CAN THINK OF

Gradient descent

$$\theta_{i+1} = \theta_i - h\nabla_\theta f(\theta, \mathbf{T})$$

Stochastic gradient descent

$$\theta_{i+1} = \theta_i - h\nabla_{\theta} f(\theta, \mathbf{T}_{\text{subset}})$$

TRAINING

 $\theta_{i+1} = \theta_i - h\nabla_{\theta} f(\theta, \mathbf{T}_{\text{subset}})$

CONVEXITY VS. NON-CONVEXITY

CURSE OF DIMENSIONALITY

N. directions forming angles between 88 and 92 degrees

 $\mathbb{R}^2 \to 2$ $\mathbb{R}^3 \to 2$ $\mathbb{R}^d \to \exp(cd)$

ALL MINIMA ARE EQUIVALENT

SGD MODIFIES THE LOSS FUNCTION

Backpropagation

HOW TO EFFICIENTLY COMPUTE THE GRADIENT

$$L = g(\mathbf{y})$$
$$\mathbf{y} = f(\mathbf{x})$$
$$L = g(f(\mathbf{x}))$$
$$\frac{\partial L}{\partial \mathbf{x}} = J^T \frac{\partial L}{\partial \mathbf{y}} = \frac{\partial \mathbf{y}}{\partial \mathbf{x}} \frac{\partial L}{\partial \mathbf{y}}$$
$$J^T = \begin{pmatrix} \frac{\partial y_1}{\partial x_1} & \cdots & \frac{\partial y_m}{\partial x_1} \\ \vdots & \ddots & \vdots \\ \frac{\partial y_1}{\partial x_n} & \cdots & \frac{\partial y_m}{\partial x_n} \end{pmatrix}$$

HOW TO EFFICIENTLY COMPUTE THE GRADIENT

HOW TO EFFICIENTLY COMPUTE THE GRADIENT

class node(object):
def forward(z):
 output = f(z)
 return output

def backward(z, dLdz):
J = jacobian(z)
return J.dot(dLdz)

Applications in Solar Physics

PROBLEMS TACKLED SO FAR

- Measuring velocities
- Enhancing HMI images
- Multiframe blind deconvolution
- Fast inversion of Stokes profiles
- Farside imaging
- Classification of solar structures
- Physical conditions in flares

measuring velocities

MEASURING VELOCITIES

MEASURING VELOCITIES

Longitudinal component

- Can be measured with Doppler effect using spectroscopy
- Physical meaning

Transverse component

- Cannot be spectroscopically measured
- Not obvious physical meaning
- Different depending on selection of "corks"
MEASURING VELOCITIES IN THE PLANE OF THE SKY

November & Simon (1988) - Local correlation tracking

MEASURING VELOCITIES IN THE PLANE OF THE SKY

November & Simon (1988) - Local correlation tracking

- Spatial correlation window
- Temporal correlation window
- Noise sensitive

LCT VS. SIMULATIONS

LIST OF DESIRES: DEEPVEL

- End-to-end approach
- Scale to any image size
- Be fast
- Easy to train

DEEPVEL: ARCHITECTURE

Asensio Ramos, Requerey & Vitas (2017)

DEEPVEL: TRAINING WITH SIMULATIONS

- Synthetic images from Stein & Nordlund (2012) + degradation
- We extract 30000 pairs of patches of 50x50 pixels separated by 30 s
- The outputs are maps of v_x and v_y at τ =1,0.1,0.01
- Loss function : ℓ_2 -norm between predicted and simulated velocities
- Trained with ADAM optimizer with β =10⁻⁴ for 900k steps

VALIDATION

DEEPVEL https://github.com/aasensio/deepvel

Asensio Ramos, Requerey & Vitas (2017)

AVERAGE PROPERTIES

SMALL SCALE VORTEX FLOWS

KINETIC ENERGY SPECTRUM

Tremblay et al. (2018)

VORTEX DETECTION

DeepVortex

CORKS EVOLUTION

Rouppe van der Voort (private comm)

enhancing HMI images

HMI: 24/7 BUT NOT ENOUGH SPATIAL RESOLUTION

ENHANCE:

Low-res image

Deconvolved hi-res image

- Trained on simulations (courtesy of M. Cheung)
- End-to-end deep neural network
- Continuum + magnetograms

ENHANCE: SINGLE IMAGE SUPERRESOLUTION

HMI

Neural network

Hinode

ENHANCE https://github.com/cdiazbas/enhance

real-time multiframe deconvolution

van Noort et al. (2005)

MULTIFRAME BLIND DECONV : MAX-LIKELIHOOD

Observed frames Optical transfer function

$$L_{i}\left(\boldsymbol{\alpha}_{i}\right) = \sum_{u} \left[\sum_{j}^{J} |D_{ij}|^{2} - \frac{\left|\sum_{j}^{J} D_{ij}^{*} \hat{S}_{ij}\right|^{2}}{\sum_{j}^{J} \left|\hat{S}_{ij}\right|^{2} + \gamma_{i}}\right]$$

$$P_{ij} = A_{ij} \exp\left\{\mathrm{i}\phi_{ij}\right\}$$

van Noort et al. (2005)

- Trained on CRISP@SST Fe I 630 nm and Ca II 854 nm deconvolved data
- End-to-end deep neural network
- Asensio Ramos et al. (A&A, arXiv:1806.07150)
- 1k x 1k images at ~100 Hz
- https://github.com/aasensio/learned_mfbd

Encoder-decoder

Recurrent

https://github.com/aasensio/learned_mfbd

POLARIMETRY

15

15

20

20

0 5 10 15 20 0 5 10 15 20 Distance [arcsec] Distance [arcsec]

GENERALIZATION TO UNSEEN DATA

100 images/s

WIP : UNSUPERVISED TRAINING

WIP : UNSUPERVISED TRAINING

fast inversion of Stokes profiles

CLASSICAL INVERSION OF STOKES PROFILES

$$L = \sum_{ij} \left[S_i(\lambda_j) - f_i(\mathbf{p}, \lambda_j) \right]^2$$

- Optimized with Levenberg-Marquardt
- Gradients are difficult to compute (non-linear + non-local forward)

SPARSITY CONSTRAINTS

 $L = \sum_{ij} \left[S_i(\lambda_j) - f_i(\mathbf{p}, \lambda_j) \right]^2 + \lambda \| \mathbf{W}^T \mathbf{p} \|_0$

CAN WE TRAIN END-TO-END?

TRAINING SETS

Rempel et al. (2012)

Cheung et al. (2010)

DEGRADING TRAINING SETS

Physical models

ARCHITECTURES

30 minutes for all Hinode observations

VALIDATION

AR10933 : INFERENCE

Temperature

Doppler velocity

AR10933 : INFERENCE

Bz

τ surfaces

DO WE FIT THE PROFILES?

LIGHT BRIDGE

farside enhacement

FARSIDE PROBLEM

Forecasting

- Solar UV irradiance
- Global solar magnetic index
- Coronal magnetic field

FARSIDE PROBLEM

EARTH

CURRENT FARSIDE PREDICTIONS

U-NET ARCHITECTURE

INJECTING ACTIVE REGIONS

OUR PREDICTIONS

OUR PREDICTIONS

classification of solar structures

CLASSIFICATION

physical conditions in flares

INVERTIBLE NEURAL NETWORKS

Ardizzone et al. (2018)

FLARE RIBBON

Osborne, Armstrong & Fletcher (2019)

Other examples...

GENERATIVE ADVERSARIAL NETWORKS

thispersondoesnotexist.com

SUPER RESOLVE GAMES

RAINDROP REMOVAL

Figure 6. Results of comparing a few different methods. From left to right: ground truth, raindrop image (input), Eigen13 [1], Pix2Pix [10] and our method. Nearly all raindrops are removed by our method despite the diversity of their colors, shapes and transparency.

Quian et al. (2018)

GENERATIVE ADVERSARIAL NETWORKS

courtesy of Y. Kawabata

Artificial Sunspot

Real Sunspot

courtesy of Y. Kawabata

DECONVOLUTION OF GALACTIC IMAGES: GAN

CLASSIFYING GALAXIES AT HIGH REDSHIFT

Huertas-Company et al (2018)

TRANSFER LEARNING FOR FUTURE SURVEYS

Domínguez-Sánchez et al (2018)

DETECTION OF GRAVITATIONAL WAVES

Deep Learning for Real-time Gravitational Wave Detection and Parameter Estimation: Results with Advanced LIGO Data

Daniel George^{1,2} and E. A. Huerta²

¹Department of Astronomy, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801 ²NCSA, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801

INVERSIONS WITHOUT RESPONSE FUNCTIONS

Reinforcement learning

REINFORCEMENT LEARNING

PACKAGES FOR DEEP LEARNING

Or PyTorch

NOTEBOOK

https://bit.ly/2Kh35Kv