

BASICS OF
 DEEP LEARNING

a. asensio ramos
@aasensior
github.com/aasensio

CONTENT

- Introduction
- Neural networks
- Basics : supervised vs unsupervised, regression, classification, deep learning
- Architecture of a neural network
- Types of neural networks: fully connected, convolutional, recurrent
- Activation functions
- Pooling
, Residual connections
- Batch normalization
- Training
- Loss functions and stochastic gradient descent
- Backpropagation
- Applications in Solar Physics and other fields
- Practical example

https://github.com/aasensio/solarnet19

Introduction
what is machine learning?
the focus of Machine Learning (ML) is to give computers the ability to learn from data, so that they may accomplish tasks that humans have difficulty expressing in pure code

REGRESSION

CLASSIFICATION

X

Polar coordinates

NATURAL NEURAL NETWORKS

ARTIFICIAL NEURAL NETWORKS

MARK I PERCEPTRON : FRANK ROSENBLATT

Source: Arvin Calspan Advanced Technology Center; Hecht-Nielsen, R. Neurocomputing (Reading, Mass.: Addison-Wesley, 1990)

CONVOLUTIONAL NEURAL NETWORKS : YANN LACUN

CONVOLUTIONAL NEURAL NETWORKS : YANN LECUN

RANDOM PLAYER

TRAINED PLAYER

After 240 min of training

AI WINTERS

Brief History of Neural Network
 DEVIEW
 2015

BE PERSEVERANT

Yoshua Bengio Montreal University

Yann LeCun
Facebook+NYU

Geoffrey Hinton Google+Toronto

but is deep learning really a

 hype?Baidu's Andrew Ng on Deep Learning and Innovation in Silicon Valley
ivervana systems raises $\$ 3.3 \mathrm{M}$ to build hardware designed for deep learpina
by Derrick Harris Aug. 21, 2014 - 5.48 AM PST
Deep learning might help at Walgreens

A Googler's Quest to Teach Machines How to Understand Emotions

Google, Spotify, \& Pandora bet a computer could generate a better playlist than you can

Butterfly Network Hopes to Bring Deep Learning Al to Medicine

$$
\begin{aligned}
& \text { Enlitic picks up } \$ 2 \mathrm{M} \text { to help diagnose } \\
& \text { diseases with deep learning }
\end{aligned}
$$

AlexNet to AlphaGo Zero: A 300,000x Increase in Compute

https://blog.openai.com/ai-and-compute

CURSE OF DIMENSIONALITY

Machine learning needs to fight the curse of dimensionality

CURSE OF DIMENSIONALITY

CURSE OF DIMENSIONALITY

CURSE OF DIMENSIONALITY

Dimension: 1

CURSE OF DIMENSIONALITY

Dimension: 2

CURSE OF DIMENSIONALITY

CURSE OF DIMENSIONALITY

Dimension: 4

HOW MUCH VOLUME CAN I FILL?

$$
V(d)=\frac{\pi^{d / 2}}{\Gamma\left(\frac{d}{2}+1\right)}\left(\frac{1}{2}\right)^{d}
$$

The volume is on the borders!

Neural networks are specially suited to adapt to the data manifold

WHERE ARE WE NOW?

Brock et al. (2018)

Basics

CLASSICAL MACHINE LEARNING VS. DEEP LEARNING

Machine learning

Deep learning

BANANA
NO-BANANA

CLASSICAL MACHINE LEARNING VS. DEEP LEARNING

Cartesian coordinates

X

Polar coordinates

r

WHY DEEP LEARNING?

NEURAL NETWORKS : INGREDIENTS

SUPERVISED TRAINING

Prediction, classification, regression, image2image, ...

UNSUPERVISED TRAINING

Clustering, feature extraction, generative models,...

Arquitecture of a neural network

THE BASICS : A NEURON

TYPES OF NEURAL NETWORKS

Convolutional Layer

TYPES OF NEURAL NETWORKS

Recurrent network

FULLY CONNECTED NEURAL NETWORK

hidden layer 1 hidden layer 2

$$
N=N_{\mathrm{in}} N_{\mathrm{hid} 1}+N_{\mathrm{hid} 1} N_{\mathrm{hid} 2}+N_{\mathrm{hid} 2} N_{\mathrm{out}}
$$

CONVOLUTIONAL NEURAL NETWORK

CONVOLUTION

STRIDE

W: volume size

$$
\frac{W-K+2 P}{S}+1
$$

K: kernel size
P: zero padding
S: stride

1X1 CONVOLUTION

ACTIVATION FUNCTION

ReLU

sigmoid

tanh

Leaky ReLU

POOLING

MAX-POOLING

Single depth slice

$x \uparrow$| 1 | 1 | 2 | 4 |
| :---: | :---: | :---: | :---: |
| 5 | 6 | 7 | 8 |
| 3 | 2 | 1 | 0 |
| 1 | 2 | 3 | 4 |

6	8
3	4

RESIDUAL CONNECTION

BATCH NORMALIZATION

$$
\left.\begin{aligned}
& \text { Input: Values of } x \text { over a mini-batch: } \mathcal{B}=\left\{x_{1 \ldots m}\right\} ; \\
& \text { Parameters to be learmed: } \gamma, \beta \\
& \text { Output: }\left\{y_{i}=\mathrm{BN}_{\gamma, \beta}\left(x_{i}\right)\right\} \\
& \mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_{i} \\
& \sigma_{\mathcal{B}}^{2} \leftarrow \frac{1}{m} \sum_{i=1}^{m}\left(x_{i}-\mu_{\mathcal{B}}\right)^{2} \\
& \widehat{x}_{i} \leftarrow \frac{x_{i}-\mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^{2}+\epsilon}} \\
& y_{i} \leftarrow \gamma \widehat{x}_{i}+\beta \equiv \mathrm{BN}_{\gamma, \beta}\left(x_{i}\right) \\
& \text { // mini-batch variance }
\end{aligned} \right\rvert\,
$$

Algorithm 1: Batch Normalizing Transform, applied to activation x over a mini-batch.

BATCH NORMALIZATION

Wu \& He (2018)

MULTISCALE ANALYSIS

ENORMOUS LANDSCAPE

TWO RULES TO DECIDE THE ARCHITECTURE

Read a lot! Still not in books: arxiv!

Experiment a lot!

Training of a neural network

LOSS FUNCTIONS

Mean squared error

$$
L=\frac{\sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2}}{n}
$$

Mean absolute error

$$
L=\frac{\sum_{i=1}^{n}\left|y_{i}-\hat{y}_{i}\right|}{n}
$$

Cross-entropy

$$
L=-\left(y_{i} \log \left(\hat{y}_{i}\right)+\left(1-y_{i}\right) \log \left(1-\hat{y}_{i}\right)\right)
$$

TRAINING: USE THE SIMPLEST YOU CAN THINK OF

Gradient descent

$$
\theta_{i+1}=\theta_{i}-h \nabla_{\theta} f(\theta, \mathbf{T})
$$

Stochastic gradient descent

$$
\theta_{i+1}=\theta_{i}-h \nabla_{\theta} f\left(\theta, \mathbf{T}_{\text {subset }}\right)
$$

TRAINING

$$
\theta_{i+1}=\theta_{i}-h \nabla_{\theta} f\left(\theta, \mathbf{T}_{\text {subset }}\right)
$$

CONVEXITY VS. NON-CONVEXITY

CURSE OF DIMENSIONALITY

N. directions forming angles
 between 88 and 92 degrees

$$
\begin{array}{r}
\mathbb{R}^{2} \rightarrow 2 \\
\mathbb{R}^{3} \rightarrow 2 \\
\mathbb{R}^{d} \rightarrow \exp (c d)
\end{array}
$$

ALL MINIMA ARE EQUIVALENT

SGD MODIFIES THE LOSS FUNCTION

Backpropagation

HOW TO EFFICIENTLY COMPUTE THE GRADIENT

$$
\begin{gathered}
L=g(\mathbf{y}) \\
\mathbf{y}=f(\mathbf{x}) \\
L=g(f(\mathbf{x})) \\
\frac{\partial L}{\partial \mathbf{x}}=J^{T} \frac{\partial L}{\partial \mathbf{y}}=\frac{\partial \mathbf{y}}{\partial \mathbf{x}} \frac{\partial L}{\partial \mathbf{y}} \\
J^{T}=\left(\begin{array}{ccc}
\frac{\partial y_{1}}{\partial x_{1}} & \cdots & \frac{\partial y_{m}}{\partial x_{1}} \\
\vdots & \ddots & \vdots \\
\frac{\partial y_{1}}{\partial x_{n}} & \cdots & \frac{\partial y_{m}}{\partial x_{n}}
\end{array}\right)
\end{gathered}
$$

HOW TO EFFICIENTLY COMPUTE THE GRADIENT

HOW TO EFFICIENTLY COMPUTE THE GRADIENT


```
class node(object):
    def forward(z):
        output = f(z)
        return output
    def backward(z, dLdz):
    J = jacobian(z)
    return J.dot(dLdz)
```

Applications in Solar Physics

PROBLEMS TACKLED SO FAR

- Measuring velocities
- Enhancing HMI images
- Multiframe blind deconvolution
- Fast inversion of Stokes profiles
- Farside imaging
- Classification of solar structures
- Physical conditions in flares
measuring velocities

MEASURING VELOCITIES

MEASURING VELOCITIES

Longitudinal component

- Can be measured with Doppler effect using spectroscopy
- Physical meaning

Transverse component

- Cannot be spectroscopically measured
- Not obvious physical meaning
- Different depending on selection of "corks"

MEASURING VELOCITIES IN THE PLANE OF THE SKY

November \& Simon (1988) - Local correlation tracking

MEASURING VELOCITIES IN THE PLANE OF THE SKY

November \& Simon (1988) - Local correlation tracking

- Spatial correlation window
- Temporal correlation window
- Noise sensitive

LCT VS. SIMULATIONS

Average time 1 h
FWHM = 1200 km

Verma \& Denker (2013)

LIST OF DESIRES: DEEPVEL

- End-to-end approach
- Scale to any image size
- Be fast
- Easy to train

DEEPVEL: ARCHITECTURE

Residual block

N blocks

DEEPVEL: TRAINING WITH SIMULATIONS

- Synthetic images from Stein \& Nordlund (2012) + degradation
- We extract 30000 pairs of patches of 50×50 pixels separated by 30 s
- The outputs are maps of v_{x} and v_{y} at $\tau=1,0.1,0.01$
- Loss function : ℓ_{2}-norm between predicted and simulated velocities
- Trained with ADAM optimizer with $\beta=10^{-4}$ for 900 k steps

VALIDATION

DEEPVEL https://github.com/aasensio/deepvel

AVERAGE PROPERTIES

SMALL SCALE VORTEX FLOWS

KINETIC ENERGY SPECTRUM

VORTEX DETECTION

DeepVortex

CORKS EVOLUTION

rritt iss:

Cant, Jisers:t,

ver::c:t |l't_s:er]

Rouppe van der Voort (private comm)

enhancing HMI images

HMI: 24/7 BUT NOT ENOUGH SPATIAL RESOLUTION

ENHANCE:

Low-res image

- Trained on simulations (courtesy of M. Cheung)
, End-to-end deep neural network
- Continuum + magnetograms

ENHANCE: SINGLE IMAGE SUPERRESOLUTION

HMI

Neural network

Hinode

ENHANCE https://github.com/cdiazbas/enhance

real-time multiframe deconvolution

MULTIFRAME BLIND DECONVOLUTION

Extended target

Collected images:

$$
\left.\begin{array}{ccc}
i=1: \\
i=2: \\
\substack{t=1, k=1,2, \quad 1,2, 1,2, \cdots} & \cdots & 1,2
\end{array}\right\} \begin{aligned}
& \text { Phase difference } \\
& \text { constant over } \\
& \text { time. }
\end{aligned}
$$

van Noort et al. (2005)

MULTIFRAME BLIND DECONV : MAX-LIKELIHOOD

$$
\begin{gathered}
\text { Observed frames } \\
L_{i}\left(\boldsymbol{\alpha}_{i}\right)=\sum_{u}\left[\sum_{j}^{J}\left|D_{i j}\right|^{2}-\frac{\left|\sum_{j}^{J} D_{i j}^{*} \hat{S}_{i j}\right|^{2}}{\sum_{j}^{J}\left|\hat{S}_{i j}\right|^{2}+\gamma_{i}}\right] \\
P_{i j}=A_{i j} \exp \left\{\mathrm{i} \phi_{i j}\right\}
\end{gathered}
$$

MULTIFRAME BLIND DECONVOLUTION

MULTIFRAME BLIND DECONVOLUTION

Short-exposure burst
Deconvolved image

- Trained on CRISP@SST Fe I 630 nm and Ca II 854 nm deconvolved data
- End-to-end deep neural network
- Asensio Ramos et al. (A\&A, arXiv:1806.07150)
- 1kx 1kimages at ~100 Hz
- https://github.com/aasensio/learned_mfbd

MULTIFRAME BLIND DECONVOLUTION

Encoder-decoder

https://github.com/aasensio/learned_mfbd

POLARIMETRY

GENERALIZATION TO UNSEEN DATA

Frame

NN

WIP : UNSUPERVISED TRAINING

WIP : UNSUPERVISED TRAINING

fast inversion of Stokes profiles

CLASSICAL INVERSION OF STOKES PROFILES

$$
L=\sum_{i j}\left[S_{i}\left(\lambda_{j}\right)-f_{i}\left(\mathbf{p}, \lambda_{j}\right)\right]^{2}
$$

- Optimized with Levenberg-Marquardt
- Gradients are difficult to compute (non-linear + non-local forward)

SPARSITY CONSTRAINTS

$$
L=\sum_{i j}\left[S_{i}\left(\lambda_{j}\right)-f_{i}\left(\mathbf{p}, \lambda_{j}\right)\right]^{2}+\lambda\left\|\mathbf{W}^{T} \mathbf{p}\right\|_{0}
$$

Pixel-by-pixel

Sparse

Asensio Ramos \& de la Cruz Rodríguez (2013)

CAN WE TRAIN END-TO-END?

Observed Stokes
profiles

3D cube physical parameters

TRAINING SETS

Rempel et al. (2012)
Cheung et al. (2010)

DEGRADING TRAINING SETS

Stokes profiles

Physical models

ARCHITECTURES

30 minutes for all Hinode observations

VALIDATION

AR10933 : CONTINUUM

Original

SIR inversions

SIR inversions+deconvolution

Deep neural network

Deep neural network+convolution

- 1.50 $11 /$

AR10933 : INFERENCE

Temperature

Doppler velocity

AR10933 : INFERENCE

τ surfaces

Bz

DO WE FIT THE PROFILES?

LIGHT BRIDGE

farside enhacement

FARSIDE PROBLEM

Forecasting
-Solar UV irradiance

- Global solar magnetic index
-Coronal magnetic field

FARSIDE PROBLEM

CURRENT FARSIDE PREDICTIONS

U-NET ARCHITECTURE

INJECTING ACTIVE REGIONS

OUR PREDICTIONS

$\begin{array}{lllllll}260 & 280 & 300 & 320 & 340 & 360 & 380\end{array}$

$240 \quad 260 \quad 280 \quad 300 \quad 320 \quad 340 \quad 360$

$240 \quad 260 \quad 280 \quad 300 \quad 320 \quad 340 \quad 360$

$200220 \quad 240260 \quad 280300320$ Carrington lon. (degrees)

$\begin{array}{lllllll}260 & 280 & 300 & 320 & 340 & 360 & 380\end{array}$

$240 \quad 260 \quad 280 \quad 300 \quad 320 \quad 340 \quad 360$

$240260 \quad 280300320340360$

$200220 \quad 240 \quad 260 \quad 280 \quad 300320$ Carrington lon. (degrees)

$260 \quad 280300320340360380$

$240 \quad 260 \quad 280 \quad 300 \quad 320 \quad 340 \quad 360$

$200220 \quad 240260280300320$ Carrington lon. (degrees)

OUR PREDICTIONS

classification of solar structures

CLASSIFICATION

physical conditions in flares

INVERTIBLE NEURAL NETWORKS

Ardizzone et al. (2018)

FLARE RIBBON

Other examples...

GENERATIVE ADVERSARIAL NETWORKS

Random input
(Latent code)
Real Sample

FACES

thispersondoesnotexist.com

SUPER RESOLVE GAMES

RAINDROP REMOVAL

(c) Eigen[1]

(d) Pix2pix-cGAN 101

(c) Our method

Figure 6. Results of comparing a few different methods. From left to right: ground truth, raindrop image (input), Eigen13 [1], Pix2Pix [10] and our method. Nearly all raindrops are removed by our method despite the diversity of their colors, shapes and transparency.

GENERATIVE ADVERSARIAL NETWORKS

Real Sunspot

Artificial Granule

DECONVOLUTION OF GALACTIC IMAGES: GAN

CLASSIFYING GALAXIES AT HIGH REDSHIFT

Huertas-Company et al (2018)

TRANSFER LEARNING FOR FUTURE SURVEYS

Domínguez-Sánchez et al (2018)

DETECTION OF GRAVITATIONAL WAVES

Deep Learning for Real-time Gravitational Wave Detection and Parameter Estimation: Results with Advanced LIGO Data

Daniel George ${ }^{1,2}$ and E. A. Huerta ${ }^{2}$
${ }^{1}$ Department of Astronomy, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801
${ }^{2}$ NCSA, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801

INVERSIONS WITHOUT RESPONSE FUNCTIONS

0.5
0_{8}^{0}
0.0 .0
0.0
0.0

Reinforcement learning

REINFORCEMENT LEARNING

PACKAGES FOR DEEP LEARNING

K Keras
 TensorFlow

O PyTorch

NOTEBOOK
https://bit.ly/2Kh35Kv

