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Introduction



what is machine learning?

the focus of Machine Learning (ML) 
is to give computers the ability to 
learn from data, so that they may 
accomplish tasks that humans have 
difficulty expressing in pure code



REGRESSION



CLASSIFICATION



NATURAL NEURAL NETWORKS



ARTIFICIAL NEURAL NETWORKS



MARK I PERCEPTRON : FRANK ROSENBLATT

Source: Arvin Calspan Advanced Technology Center; Hecht-Nielsen,  
R. Neurocomputing (Reading, Mass.: Addison-Wesley, 1990)



CONVOLUTIONAL NEURAL NETWORKS : YANN LACUN



CONVOLUTIONAL NEURAL NETWORKS : YANN LECUN



RANDOM PLAYER



After 240 min of training
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but is deep learning really a 
hype?





https://blog.openai.com/ai-and-compute





CURSE OF DIMENSIONALITY

Machine learning needs to fight the curse of dimensionality



CURSE OF DIMENSIONALITY



CURSE OF DIMENSIONALITY



CURSE OF DIMENSIONALITY

Dimension: 1



CURSE OF DIMENSIONALITY

Dimension: 2



CURSE OF DIMENSIONALITY

Dimension: 3



CURSE OF DIMENSIONALITY

Dimension: 4



HOW MUCH VOLUME CAN I FILL?
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The volume is on the borders!

Neural networks are specially  
suited to adapt to the data  
manifold



(a) (b)

Figure 7: Comparing easy classes (a) with difficult classes (b) at 512⇥512. Classes such as dogs
which are largely textural, and common in the dataset, are far easier to model than classes involving
unaligned human faces or crowds. Such classes are more dynamic and structured, and often have
details to which human observers are more sensitive. The difficulty of modeling global structure is
further exacerbated when producing high-resolution images, even with non-local blocks.

Figure 8: Interpolations between z, c pairs.
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ABSTRACT

Despite recent progress in generative image modeling, successfully generating
high-resolution, diverse samples from complex datasets such as ImageNet remains
an elusive goal. To this end, we train Generative Adversarial Networks at the
largest scale yet attempted, and study the instabilities specific to such scale. We
find that applying orthogonal regularization to the generator renders it amenable
to a simple “truncation trick,” allowing fine control over the trade-off between
sample fidelity and variety by truncating the latent space. Our modifications lead
to models which set the new state of the art in class-conditional image synthe-
sis. When trained on ImageNet at 128⇥128 resolution, our models (BigGANs)
achieve an Inception Score (IS) of 166.3 and Fréchet Inception Distance (FID) of
9.6, improving over the previous best IS of 52.52 and FID of 18.65.

1 INTRODUCTION

Figure 1: Class-conditional samples generated by our model.

The state of generative image modeling has advanced dramatically in recent years, with Generative
Adversarial Networks (GANs, Goodfellow et al. (2014)) at the forefront of efforts to generate high-
fidelity, diverse images with models learned directly from data. GAN training is dynamic, and
sensitive to nearly every aspect of its setup (from optimization parameters to model architecture),
but a torrent of research has yielded empirical and theoretical insights enabling stable training in
a variety of settings. Despite this progress, the current state of the art in conditional ImageNet
modeling (Zhang et al., 2018) achieves an Inception Score (Salimans et al., 2016) of 52.5, compared
to 233 for real data.

In this work, we set out to close the gap in fidelity and variety between images generated by GANs
and real-world images from the ImageNet dataset. We make the following three contributions to-
wards this goal:

• We demonstrate that GANs benefit dramatically from scaling, and train models with two
to four times as many parameters and eight times the batch size compared to prior art. We
introduce two simple, general architectural changes that improve scalability, and modify a
regularization scheme to improve conditioning, demonstrably boosting performance.

⇤Work done at DeepMind
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Brock et al. (2018)

WHERE ARE WE NOW?



Basics



CLASSICAL MACHINE LEARNING VS. DEEP LEARNING

Credits: freepik.com

BANANA 
NO-BANANA

ENGINEERED 
FEATURES

BANANA 
NO-BANANA

Machine learning

Deep learning



CLASSICAL MACHINE LEARNING VS. DEEP LEARNING



WHY DEEP LEARNING?



NEURAL NETWORKS : INGREDIENTS

NEURONS

CONNECTIVITY

LOSS



SUPERVISED TRAINING

BANANA

APPLE

CHERRY

Prediction, classification, regression, image2image, …



UNSUPERVISED TRAINING

Clustering, feature extraction, generative models,…



Arquitecture of a neural network



THE BASICS : A NEURON



TYPES OF NEURAL NETWORKS



TYPES OF NEURAL NETWORKS

Recurrent network



FULLY CONNECTED NEURAL NETWORK

N = NinNhid1 +Nhid1Nhid2 +Nhid2Nout
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CONVOLUTIONAL NEURAL NETWORK

N = NinNkerd
2
ker
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CONVOLUTION

depth/channels

size

stride



STRIDE

W �K + 2P

S
+ 1
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W: volume size 

K: kernel size 

P: zero padding 

S: stride



1X1 CONVOLUTION



ACTIVATION FUNCTION



POOLING



MAX-POOLING



RESIDUAL CONNECTION
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BATCH NORMALIZATION

 Ioffe & Szegedy (2015)



BATCH NORMALIZATION

 Wu & He (2018)



MULTISCALE ANALYSIS



ENORMOUS LANDSCAPE



TWO RULES TO DECIDE THE ARCHITECTURE

Read a lot!

Experiment a lot!

Still not in books: arxiv!



Training of a neural network



LOSS FUNCTIONS

L =

Pn
i=1 (yi � ŷi)

2

n
<latexit sha1_base64="IepiLAFmNO7I6CXhPpQrFSgKpWo="></latexit>Mean squared error

L =

Pn
i=1 |yi � ŷi|

n
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Mean absolute error

L = � (yi log (ŷi) + (1� yi) log (1� ŷi))
<latexit sha1_base64="IWO8PLZVaYYibFVKabne8x80u4I="></latexit>

Cross-entropy



Gradient descent

✓i+1 = ✓i � hr✓f(✓,T)

Stochastic gradient descent

✓i+1 = ✓i � hr✓f(✓,Tsubset)

TRAINING: USE THE SIMPLEST YOU CAN THINK OF



✓i+1 = ✓i � hr✓f(✓,Tsubset)

TRAINING



CONVEXITY VS. NON-CONVEXITY



CURSE OF DIMENSIONALITY

R2 ! 2

R3 ! 2

Rd ! exp(cd)
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N. directions forming angles  
between 88 and 92 degrees



ALL MINIMA ARE EQUIVALENT



SGD MODIFIES THE LOSS FUNCTION



Backpropagation



HOW TO EFFICIENTLY COMPUTE THE GRADIENT

y = f(x)
<latexit sha1_base64="ZXlPqdhj7SvwMU32s53+LZWH0yc="></latexit>

L = g(y)
<latexit sha1_base64="v7SAZKs4zWcNotgsuXGgHLSFLgs="></latexit>

L = g(f(x))
<latexit sha1_base64="bm2OS0kI4/eC/Ayn+teORFzIzAM="></latexit>
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HOW TO EFFICIENTLY COMPUTE THE GRADIENT
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forward propagation

backward propagation
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HOW TO EFFICIENTLY COMPUTE THE GRADIENT
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class node(object): 
def forward(z): 
output = f(z) 
return output 

def backward(z, dLdz): 
J = jacobian(z) 
return J.dot(dLdz)



Applications in Solar Physics



PROBLEMS TACKLED SO FAR

▸ Measuring velocities 

▸ Enhancing HMI images 

▸ Multiframe blind deconvolution 

▸ Fast inversion of Stokes profiles 

▸ Farside imaging 

▸ Classification of solar structures 

▸ Physical conditions in flares



measuring velocities



MEASURING VELOCITIES



Longitudinal component

‣ Can be measured with Doppler effect using spectroscopy 

‣ Physical meaning

Transverse component

‣ Cannot be spectroscopically measured 

‣ Not obvious physical meaning 

‣ Different depending on selection of “corks”

MEASURING VELOCITIES
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November & Simon (1988) - Local correlation tracking

MEASURING VELOCITIES IN THE PLANE OF THE SKY
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November & Simon (1988) - Local correlation tracking

‣ Spatial correlation window 

‣ Temporal correlation window 

‣ Noise sensitive

MEASURING VELOCITIES IN THE PLANE OF THE SKY



Verma & Denker (2013)

M. Verma, M. Steffen, and C. Denker: Evaluating local correlation trackingusing CO5BOLD simulations of solar granulation
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Fig. 11. Speed (top) and divergence (bottom) maps averaged over time intervals of ∆T = 15–120 min of the horizontal plasma velocities corre-
sponding to an optical depth of log τ = 0. The speed and divergence values are larger roughly by a factor of three as compared to Fig. 3.
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Fig. 12. LCT divergence map computed for input parameters: image
scale 80 km pixel−1, time cadence ∆t = 60 s, Gaussian sampling win-
dow with an FWHM = 1200 km, and averaging time ∆T = 1 h.
Overplotted are the contours of the corresponding one-hour averaged
divergence of the actual flow velocity smoothed by a Gaussian with
an FWHM = 1266 km. Orange (solid) and blue (dashed) lines in-
dicate positive and negative (±1, ±2 and ±3 × 10−3 s−1) divergence,
respectively.

differences, not to mention the drastic difference in the absolute
values of speed and divergence. In general, our findings are in
good agreement with Matloch et al. (2010), e.g., their Fig. 2. In
Fig. 9, we found a negligible dependence of the LCT results on
the image scale (28 vs. 80 km pixel−1) or in this context equiv-
alently the spatial resolution. Hence, for the further discussion,
we use G-band-type LCT flow maps.

The frequency distributions of the actual plasma velocities
are shown in Fig. 13. The distributions are assembled from
the 180 velocity maps covering about one-hour. The mode of
the distributions is shifted to higher velocities for higher atmo-
spheric layers. For comparison, we show the LCT-based veloc-
ity distribution. The LCT input parameters were a time cadence
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Fig. 13. Relative frequency distributions for the horizontal plasma ve-
locities corresponding to different optical depths of log τ = −1, 0, and
+1, which are depicted as long-dashed, dashed, and dash-dotted curves,
respectively. The three vertical lines mark the position of median vmed
(solid), mean v̄ (long-dashed), and 10th percentile v10 (dash-dotted)
values of speed at an optical depth of log τ = 0. A frequency dis-
tribution (solid) for LCT flow velocities was stretched by a factor of
about three so that the root-mean-square deviation from the profile with
log τ = 0 was minimal. The LCT input parameters were image scale
80 km pixel−1, time cadence ∆t = 60 s, and a Gaussian sampling win-
dow with an FWHM = 1200 km.

of ∆t = 60 s and a Gaussian sampling window with an FWHM =
1200 km. Similar to Fig. 8, the flow speeds were derived from
the individual flow maps, i.e., the flow vectors were not aver-
aged before computing the frequency distributions. We scaled
the LCT frequency distribution by the factor of ≈3.01 in veloc-
ity to match it with the distributions for the actual plasma veloc-
ities. The stretched LCT and actual velocity distributions have
very similar shapes. For an optical depth of log τ = 0, it had the
lowest χ2-error. However, the differences in the χ2-error for all
three optical depths are not significant.

In Fig. 14, we plotted the mean flow speed as a func-
tion of elapsed time for the actual plasma velocities at optical

A136, page 9 of 11

Average time 1 h 

FWHM = 1200 km
Divergence map

1-hour average 
from simulations

LCT VS. SIMULATIONS



LIST OF DESIRES: DEEPVEL

‣ End-to-end approach 

‣ Scale to any image size 

‣ Be fast 

‣ Easy to train

ti

ti+1



DEEPVEL: ARCHITECTURE

Asensio Ramos, Requerey & Vitas (2017)



DEEPVEL: TRAINING WITH SIMULATIONS

‣ Synthetic images from Stein & Nordlund (2012) + degradation 

‣ We extract 30000 pairs of patches of 50x50 pixels separated by 30 s 

‣ The outputs are maps of vx and vy at 𝜏=1,0.1,0.01 

‣ Loss function : 𝓁2 -norm between predicted and simulated velocities 

‣ Trained with ADAM optimizer with 𝛽=10-4 for 900k steps



MANCHA

DeepVel

VALIDATION



DEEPVEL

Asensio Ramos, Requerey & Vitas (2017)

https://github.com/aasensio/deepvel



DeepVel LCT

AVERAGE PROPERTIES



SMALL SCALE VORTEX FLOWS
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Figure 3 Kinetic energy spectra E(k) of the 30-minute-averaged horizontal velocities computed from
(a) pairs of consecutive synthetic intensitygrams with spatial resolution !x ≈ 0.505′′ ≈ 368 km per pixel,
and (b) pairs of consecutive SDO/HMI intensitygrams. k is the wavenumber. Granular (k ≈ 1 Mm−1), meso-
granular (k ≈ 0.4 Mm−1), and supergranular (k ≈ 0.1 Mm−1) scales are labeled ‘G’, ‘MG’, and ‘SG’, re-
spectively.

where [k]is the wavenumber, everywhere divided by 2π so as to easily give the associated
wavelength, [v̄h]is the horizontal velocity modulus averaged over 30 minutes, and ⟨·⟩ is a
spatial average operator. More specifically, the kinetic energy densities E(k) are obtained
following

E(k) = N3p

4πNxNy

∑

∀k′∈[k,k+dk]/2π

∣∣v̄h
(
k′)∣∣2

, (2)

where Nx and Ny are the dimensions of the data array, N are the dimensions of the square
over which Fourier transforms are performed, and p is the linear size of a pixel. We refer
to Rieutord et al. (2010) for the detailed computation of E(k). At supergranular scales (k ≤
0.1 Mm−1), vS and all inferred flows agree well (Figure 3). vD (red curve) is the only velocity
field that accurately reproduces the energy spectra of vS (blue curve) at mesogranular (0.1 <

k ≤ 0.4 Mm−1), granular (0.4 < k ≤ 1 Mm−1), and subgranular scales (k > 1 Mm−1). The
other reconstruction algorithms peak at supergranular scales and do not contribute to spectral
features below mesogranular scales. This is expected since granule tracking is unable to
track flows below k ≈ 0.4 Mm−1 (λ ≈ 2.5 Mm; Rieutord et al., 2010) and because the bin
size used by both LCT and FLCT is 7 pixels (≈2.5 Mm) and even larger for CST.

3.1.2. Propagation of Passive Scalars

Supergranular motions were further examined through the propagation of corks by flows vS,
vD, and vL averaged over six hours (Figure 4). A smoothing window of the same dimensions
as the bin used by the LCT method (7 × 7 pixels2) was applied to vS and vD. Positive hori-
zontal divergences of vD and vL are spatially correlated with the reference flow vS (Pearson
linear correlation coefficients of 0.922 and 0.783, respectively). Starting from randomized
positions, a great majority of corks gather on the network formed by the line-of-sight pho-
tospheric magnetic field at supergranular scales (Figure 4), confirming the presence of a
similar supergranular component in all three flows.

Simulations SDO/HMI

Tremblay et al. (2018)

KINETIC ENERGY SPECTRUM



VORTEX DETECTION

Requerey et al. (in prep)

DeepVortex



CORKS EVOLUTION

Rouppe van der Voort (private comm)



enhancing HMI images



HMI: 24/7 BUT NOT ENOUGH SPATIAL RESOLUTION



ENHANCE:

Low-res image Deconvolved 
hi-res image

 

▸ Trained on simulations (courtesy of M. Cheung) 

▸ End-to-end deep neural network 

▸ Continuum + magnetograms

http://github.com/aasensio/deepvel


HMI HinodeNeural network

ENHANCE: SINGLE IMAGE SUPERRESOLUTION



courtesy of S. Castellanos Durán

ENHANCE https://github.com/cdiazbas/enhance



real-time multiframe deconvolution



MULTIFRAME BLIND DECONVOLUTION

4 van Noort, Rouppe van der Voort & Löfdahl

Filter i = 1

Filter i = 2

Extended target

☛
Turbulence

❘
Optics

❄

Shutter

❯

Beam splitter(s)

❯

PD Detector
❨

✗

Collected images:

Phase difference
constant over
time.

⎫

⎪

⎪

⎬

⎪

⎪

⎭

i = 1: ...

i = 2: ...

t = 1, 2, 3, ... T
k = 1, 2, 1, 2, 1, 2, ... 1, 2

Figure 1. Data collection model. All images collected at a particular time, t, share
the same realization of the random seeing phase aberrations. The “filters” can be
interference filters or polarizers, depending on the observational needs. Although
looking at the same patch on the Sun, they give rise to different objects, i. A “PD
detector” is either a set of cameras and beamsplitters that collect images at different
focus positions (as in Section 4.1 below) or a device that lets us collect such images
on a single camera (see circular inset). The diversity channels are labeled with
different k.

Earlier work in the area of combining multi-spectral data for wave-
front sensing and image restoration include the wavelength diversity
simulation experiments by Thelen et al. (1995) and Dionne and Gon-
salves (2004), who assume a common object (up to a scale factor) in
the wavefront sensing step. For well separated wavelengths, it has the
attractive property of providing phase diversity (by wavelength change
instead of focus shift). It is not useful for solar observations, because
the assumption of a common object involves a model mismatch that
should give suboptimal fitting for targets like the Sun, where the whole
point of multi-wavelength observations is that the Sun looks differ-
ent. Furthermore, the assumption of a common wavefront deformation
breaks down for atmospheric turbulence when the wavelengths are too
much separated. Ingleby and McGaughey (2005) use a multiple object
approach more similar to our processing of solar data, although it is
not clear from the published data whether their performance is actually
better than single-object MFBD.

momfpd.tex; 21/03/2005; 22:57; p.4

van Noort et al. (2005)



MULTIFRAME BLIND DECONV : MAX-LIKELIHOOD

van Noort et al. (2005)
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���Ŝij

���
2
+ �i

3

75

<latexit sha1_base64="bR+mkOsDhm8sUvfSDiWhJuct7BM="></latexit>
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Observed frames Optical transfer function



MULTIFRAME BLIND DECONVOLUTION



MULTIFRAME BLIND DECONVOLUTION

▸ Trained on CRISP@SST Fe I 630 nm and Ca II 854 nm deconvolved data 

▸ End-to-end deep neural network 

▸ Asensio Ramos et al. (A&A, arXiv:1806.07150) 

▸ 1k x 1k images at ~100 Hz 

▸ https://github.com/aasensio/learned_mfbd

Short-exposure burst Deconvolved image

https://github.com/aasensio/learned_mfbd
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POLARIMETRY



GENERALIZATION TO UNSEEN DATA

100 images/s



WIP : UNSUPERVISED TRAINING



WIP : UNSUPERVISED TRAINING



fast inversion of Stokes profiles



CLASSICAL INVERSION OF STOKES PROFILES

S(�) = f(p,�)
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Stokes vector

T, B, v, …

Radiative transfer+QM

L =
X

ij

[Si(�j)� fi(p,�j)]
2
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▸ Optimized with Levenberg-Marquardt 

▸ Gradients are difficult to compute (non-linear + non-local forward)



SPARSITY CONSTRAINTS

L =
X
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Fig. 6. Same as Fig. 4, but for the sunspot data.
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Fig. 1. Synthetic continuum images of the snapshots used for training. The left panel shows the sunspot simulation of Rempel (2012) and the right
panel shows the emerging flux region simulation of Cheung et al. (2010b).

2. Training sets

Current DNNs are frequently limited only by the properties and
quality of the training set (apart from the availability of special-
ized hardware and time). For our purpose, two possibilities for
training could be explored. The first one, that we defer for a
subsequent work, is to use standard inversions carried out with
codes like SIR. The 2D maps of inferred quantities are then used
as training for a deep convolutional neural network. One of the
advantages of this approach is that solar physicists are already
familiar with these empirical inversions. On the contrary, since
the training is done in pixel-by-pixel inversions, the use of CNNs
during training only helps in denoising inversions but does not
exploit any spatial correlation present in the training data. The
second option, which is pursued here, is to use Stokes spectra
synthesized in 3D MHD simulations of the solar atmosphere.
These simulations might still su↵er from a lack of realism but
they will eventually become very precise. The advantages of
training in these simulations are: i) the CNNs will be able to
exploit all the spatial information that is encoded in the training
set, ii) deconvolution can be easily implemented during train-
ing, iii) information that cannot be obtained using standard in-
versions can be recovered (like the Wilson depression or the gas
pressure). The disadvantage of using simulations as training data
is that results might be inaccurate. We expect the results to im-
prove as more advanced simulations are developed. In this sense,
our results might be considered as a baseline that are hopefully
improved in the near future.

For our purpose we used two di↵erent snapshots carried
out with the MURaM code (Vögler et al. 2005). The aim of
this selection is to provide the neural network with examples
of structures that can be found later in real observation so that
the properties can be inferred with su�cient generalization. The
first one is a snapshot of the sunspot simulation carried out by
Rempel (2012). A continuum image at 630 nm is shown in
the left panel of Fig. 1. This snapshot shows a well-developed
sunspot, with a penumbra of su�cient realism so as to gener-
ate the typical penumbral filaments. The snapshot cube is of size
1536⇥1536⇥128 with 32 km horizontal (0.04400per pixel) and
16 km vertical grid spacing. This simulation is considered to be
the state of the art in the generation of a numerical solar sunspot
and its fine structure (Tiwari et al. 2013). One of the problems
of this simulation for our purpose is that the sunspot is unipo-

lar, so that a large percentage of the FOV contains only one po-
larity. For this reason, we artificially generate another snapshot
where the magnetic field vector is reversed at each individual
grid point. This is a valid procedure under the assumption that
this change does not strongly a↵ect the thermodynamics. We ex-
pect this to be the case given that the photosphere is a region
where the plasma-� is large, so the magnetic pressure is negligi-
ble in comparison to the gas pressure. We expect in the future to
improve our training set by adding another snapshot of a well-
developed sunspot simulation with the opposite polarity.

The second snapshot is from the simulation of the formation
of an active region on the solar surface by Cheung et al. (2010b).
The right panel of Fig. 1 displays the image in the continuum
at 630 nm. The snapshot provides a region of large complexity,
with opposite polarities in the interface between the two polari-
ties of the active region. The snapshot is of size 1920⇥960⇥256
with 48 km (0.06600per pixel) horizontal and 32 km vertical grid
spacing.

The synthetic Stokes profiles used during training are ob-
tained after the following process:

1. The synthesis module of SIR3 is used to compute the Stokes
parameters for all the pixels in the two snapshots on the pair
of Fe i lines at 6301.5 Å and 6302.5 Å at disk center. SIR
requires the the logarithm of the optical depth at 500 nm
(log ⌧500) as input. For consistency, we compute this axis us-
ing the background opacity package inside SIR and discard
all depths for which log ⌧500 > 2 because they do not af-
fect the emergent profiles. More precise background opacity
packages could have been used but we have verified that a
mismatch between the opacity package for the generation of
the optical depth axis and that of the synthesis might a↵ect
the emergent Stokes profiles significantly, with di↵erences
that can be as high as 15-20%. For this reason, we prefer to
use SIR as a reference to allow for better comparison with
previous results and standard SIR inversions.

2. The synthetic observations are spatially degraded with the
Hinode PSF as computed by (Danilovic et al. 2010). The re-
sults are rebinned to the Hinode pixel size of 0.1600.

3. The spectra at each spatial point is convolved with the spec-
tral PSF of Hinode and reinterpolated on the standard Hinode

3 A parallel synthesis code for the synthesis of LTE lines based on SIR
is available on https://github.com/aasensio/3d_sir.
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Fig. 1. Synthetic continuum images of the snapshots used for training. The left panel shows the sunspot simulation of Rempel (2012) and the right
panel shows the emerging flux region simulation of Cheung et al. (2010b).

2. Training sets

Current DNNs are frequently limited only by the properties and
quality of the training set (apart from the availability of special-
ized hardware and time). For our purpose, two possibilities for
training could be explored. The first one, that we defer for a
subsequent work, is to use standard inversions carried out with
codes like SIR. The 2D maps of inferred quantities are then used
as training for a deep convolutional neural network. One of the
advantages of this approach is that solar physicists are already
familiar with these empirical inversions. On the contrary, since
the training is done in pixel-by-pixel inversions, the use of CNNs
during training only helps in denoising inversions but does not
exploit any spatial correlation present in the training data. The
second option, which is pursued here, is to use Stokes spectra
synthesized in 3D MHD simulations of the solar atmosphere.
These simulations might still su↵er from a lack of realism but
they will eventually become very precise. The advantages of
training in these simulations are: i) the CNNs will be able to
exploit all the spatial information that is encoded in the training
set, ii) deconvolution can be easily implemented during train-
ing, iii) information that cannot be obtained using standard in-
versions can be recovered (like the Wilson depression or the gas
pressure). The disadvantage of using simulations as training data
is that results might be inaccurate. We expect the results to im-
prove as more advanced simulations are developed. In this sense,
our results might be considered as a baseline that are hopefully
improved in the near future.

For our purpose we used two di↵erent snapshots carried
out with the MURaM code (Vögler et al. 2005). The aim of
this selection is to provide the neural network with examples
of structures that can be found later in real observation so that
the properties can be inferred with su�cient generalization. The
first one is a snapshot of the sunspot simulation carried out by
Rempel (2012). A continuum image at 630 nm is shown in
the left panel of Fig. 1. This snapshot shows a well-developed
sunspot, with a penumbra of su�cient realism so as to gener-
ate the typical penumbral filaments. The snapshot cube is of size
1536⇥1536⇥128 with 32 km horizontal (0.04400per pixel) and
16 km vertical grid spacing. This simulation is considered to be
the state of the art in the generation of a numerical solar sunspot
and its fine structure (Tiwari et al. 2013). One of the problems
of this simulation for our purpose is that the sunspot is unipo-

lar, so that a large percentage of the FOV contains only one po-
larity. For this reason, we artificially generate another snapshot
where the magnetic field vector is reversed at each individual
grid point. This is a valid procedure under the assumption that
this change does not strongly a↵ect the thermodynamics. We ex-
pect this to be the case given that the photosphere is a region
where the plasma-� is large, so the magnetic pressure is negligi-
ble in comparison to the gas pressure. We expect in the future to
improve our training set by adding another snapshot of a well-
developed sunspot simulation with the opposite polarity.

The second snapshot is from the simulation of the formation
of an active region on the solar surface by Cheung et al. (2010b).
The right panel of Fig. 1 displays the image in the continuum
at 630 nm. The snapshot provides a region of large complexity,
with opposite polarities in the interface between the two polari-
ties of the active region. The snapshot is of size 1920⇥960⇥256
with 48 km (0.06600per pixel) horizontal and 32 km vertical grid
spacing.

The synthetic Stokes profiles used during training are ob-
tained after the following process:

1. The synthesis module of SIR3 is used to compute the Stokes
parameters for all the pixels in the two snapshots on the pair
of Fe i lines at 6301.5 Å and 6302.5 Å at disk center. SIR
requires the the logarithm of the optical depth at 500 nm
(log ⌧500) as input. For consistency, we compute this axis us-
ing the background opacity package inside SIR and discard
all depths for which log ⌧500 > 2 because they do not af-
fect the emergent profiles. More precise background opacity
packages could have been used but we have verified that a
mismatch between the opacity package for the generation of
the optical depth axis and that of the synthesis might a↵ect
the emergent Stokes profiles significantly, with di↵erences
that can be as high as 15-20%. For this reason, we prefer to
use SIR as a reference to allow for better comparison with
previous results and standard SIR inversions.

2. The synthetic observations are spatially degraded with the
Hinode PSF as computed by (Danilovic et al. 2010). The re-
sults are rebinned to the Hinode pixel size of 0.1600.

3. The spectra at each spatial point is convolved with the spec-
tral PSF of Hinode and reinterpolated on the standard Hinode

3 A parallel synthesis code for the synthesis of LTE lines based on SIR
is available on https://github.com/aasensio/3d_sir.
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Fig. 2. Encoder-decoder (upper panel) and concatenate architectures (lower panel).

the temperature and Wilson depression. For these outputs, we
simply add the continuum image (in normalized units) directly
to the output of the decoder.

The specificities of the encoder-decoder architecture are as
follows. To normalize the polarization and prevent it from being
ignored by being much smaller than Stokes I, we compute the
map of maximum amplitude in absolute value (thresholded from
below at 5⇥10�3) for each Stokes parameter Q, U and V and
normalize them to each value4. The maps of maximum ampli-
tude are then added as input in log scale after subtracting the
mean value. Therefore, the total number of input channels is
448+3=451. For that reason, the red blocks in Fig. 2, which re-
fer to input layers are, in this case, patches of size 32⇥32 with
451 channels. Concerning the output, all physical conditions are
linearly transformed to the interval [0, 1] using the minimum and
maximum values from all available snapshots. When the neural
network is used in evaluation, this transformation is undone to
recover all physical quantities in the correct units. Finally, we
point out that we add a noise realization to the maps of the snap-
shots used for training and leave it unchanged during the train-
ing.

In the encoder-decoder architecture, gray blocks refer to con-
volutional blocks. They are made of the consecutive application
of a batch normalization layer (Io↵e & Szegedy 2015), a rectified
linear unit activation function (ReLU; Nair & Hinton 2010) and
a convolution with a kernel of size 3⇥3 with a reflection padding
of one pixel in the borders to maintain the size of the images.
Pink blocks are similar to the gray ones but the convolution is
done with a 1⇥1 kernel. Blue colors are similar convolutional
blocks but the convolution is done with a stride of 2, thus reduc-
ing the size of the input image by a factor 2, but increasing the

4 We have verified that, when run in validation mode with real Hinode
data, slightly better results are found if the threshold is set to a larger
value (of the order of 0.1), with no appreciable impact on the inferred
quantities.

number of channels by another factor 2. Orange blocks are made
of the consecutive application of batch normalization, ReLU, a
bilinear upsampling of a factor 2 and a 3⇥3 convolution with re-
flection padding while reducing the number of channels. Finally,
the golden layer is the output, in our case patches of size 32⇥32
with 49 channels. The number of channels of each set of blocks
is indicated in the figure.

We note that the specific number of blocks and their prop-
erties have been set according to previous experience and also
encouraged by the successful results showed in the next sec-
tions. Although not proven here, we assume that a careful abla-
tion study can produce simpler and faster architectures. Specifi-
cally, our election of 32 channels in the first convolutional block
is motivated by the expected dimensionality of spectropolarimet-
ric data in the pair of Fe i lines at 630 nm (Asensio Ramos et al.
2007b) and the fact that even a simple linear principal compo-
nent analysis of the Stokes parameters is able to reconstruct the
profiles close to the noise level with only a few eigenprofiles.

One of the advantages of the encoder-decoder architecture
is that spatial information is e�ciently shared. After the three
stages of encoding that we use, an image that is originally of
size 32⇥32 turns out to be of size 4⇥4. A convolution with a ker-
nel of size 3⇥3 thus couples all pixels in the image at this fourth
stage. The output of the network can therefore make e�cient use
of spatial information from distant structures in the Stokes pa-
rameters. This is probably not crucial in our case because Stokes
parameters in LTE fundamentally depend on very local infor-
mation5 (not much larger than the size of the PSF). However,
it introduces an extra robustness that can be very interesting for
very extended structures like large sunspots. From a computa-
tional perspective, encoder-decoder architectures are memory-
and computation-e�cient. Images become smaller during the

5 For the 3D non-LTE problem this type of neural networks could be
very e�cient on capturing the relation between each pixel and its sur-
roundings.
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Fig. 3. Gaussian kernel density estimate of the di↵erence between the physical parameters at di↵erent constant optical depth surfaces and the value
inferred by the encoder-decoder DNN in the validation set. Results are similar for both architectures.

encoder phase, so that convolutions can be made faster and with
a lower memory footprint. On the disadvantage side, encoder-
decoder networks are sometimes slightly di�cult to train.

The scalar loss of Eq. (2) is optimized with respect to W
via the well-known Adam optimizer (Kingma & Ba 2014). The
network has ⇠3.31 million free parameters. The neural network
was trained during 50 epochs with a batch size of 128. The
learning rate is 3⇥10�4 but it is reduced by a factor of 1/2 ev-
ery 30 epochs. The neural network is implemented and trained
in PyTorch, which seamlessly allows us to leverage Graphical
Processing Units (GPU) to accelerate the calculations (Harker &
Mighell 2012). We used a Titan X and a P100 NVIDIA GPUs
for training during the exploration of hyperparameters.

3.2. Concatenate

The second architecture, displayed in the lower panel of Fig. 2, is
also fully convolutional. The main di↵erence with the encoder-
decoder architecture is that the spatial size of the images is kept
fixed throughout the entire architecture. For this second archi-
tecture we have opted for a more conservative strategy, similar
in philosophy to Carroll & Staude (2001) and Carroll & Kopf
(2008), who trained a di↵erent network for each physical pa-
rameter. The main di↵erence is that the output of mini-networks
are concatenated at the end of the topology and we include more
physical parameters than previous studies.

One of the advantages of this architecture is that the size
in pixels of the input can be arbitrary and does not need to be
multiple of any number. While in the encoder-decoder network
the spatial dimensionality of the input is reduced thanks to the
bottleneck, a similar compression e↵ect can be achieved in this

case by reducing the flexibility of the connectivity or reducing
the number of kernels of each convolutional layer in the net-
work. On the downside, by having a mini-network for each phys-
ical variable, this architecture does not exploit the common pat-
terns and relationships among the di↵erent physical parameters.
Consequently, it needs a large number of network parameters to
achieve high accuracy. Despite these di↵erences, many of the
details discussed in the previous section about accelerating the
training and improving the accuracy still applies to this case.

The specificities of the concatenate architecture are as fol-
lows. As before, the red block in the lower panel of Fig. 2 refers
to input layers, in our case patches of size 32⇥32 with 448 chan-
nels, that is, just four Stokes parameters with 112 wavelength
points each. The normalization in this case is very simple (1 for
Stokes I and 0.1 for Stokes Q, U and V). The accuracy of the net-
work is good using this simple scaling, which makes all Stokes
parameters have roughly the same order of magnitude. Finally,
noise is added online during the creation of each batch, so it
changes from epoch to epoch.

Gray blocks in the lower panel of Fig. 2 refer to convolu-
tional blocks, which are slightly di↵erent to those of the encoder-
decoder case. They are built by the consecutive application of a
convolution with a kernel of size 3⇥3 with a reflection padding
and an exponential linear unit activation function (ELU; Clevert
et al. 2015). This activation function has been proven to speed up
learning while leading to higher accuracies than using batch nor-
malization layer followed by a ReLU activation function, like in
the encoder-decoder architecture. ELUs allow negative values to
pass through the network, thus forcing the mean response of the
neurons to lie closer to zero but with a clear saturation plateau
in its negative regime. This allows networks to learn more ro-
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Fig. 8. Total gas pressure at four di↵erent optical depth surfaces in the
encoder-decoder network. The pressure is measured in cgs units (dyn
cm�2).

heliocentric angle is perhaps too large in this case for the results
to be quantitatively relevant given that the training set was ob-
tained using only synthesis at disk center. We anticipate that a
suitable training set with synthesis carried out at di↵erent helio-
centric angles could be used to quantitatively analyze observa-
tions like this one. The interest of showing this region is to show
that the DNN approach can seamlessly be used to infer the phys-
ical properties in very complex regions. The Wilson depression
and Bz are displayed in the upper two rows of Fig. 10 while addi-
tional figures with the rest of physical quantities can be found in
the repository created for this paper. These Wilson depressions
might di↵er from the real ones when measured perpendicular to
the solar surface. Concerning the LOS magnetic field, we find
a very complex region with three large-scale polarity inversion
lines that are captured by the inversion. Additionally, we find
small regions of opposite polarity embedded inside regions of
negative polarity.

4.2.2. Quiet Sun

Finally, we show some results with the observation acquired with
Hinode SOT/SP on 2007 March 10 from 11:37 to 14:37 UT at
disk center. This is a very large portion of the quiet Sun and
we only show a small patch of the observation. The results are
shown in the lower two rows of Fig. 10. The map of Bz dis-
plays a large part of the internetwork with very weak fields and
a filamentary network structure. The expansion of the field with
height is clearly inferred, together with a significant reduction
in amplitude. Concerning the Wilson depressions, the log ⌧ = 0
surface on the network is only ⇠150 km below that of the inter-
network. In the internetwork, the Wilson depression for log ⌧ = 0
has a value of �4.16±37.3 km, while it becomes 152.9±30.5 km,
314.5± 34.7 km and 486.5± 37.0 km for log ⌧ = �1, log ⌧ = �2
and log ⌧ = �3, respectively. Consequently, the corrugation of
the constant optical depths surfaces is of the order of 35 km in
very weakly magnetized regions.

Fig. 9. Continuum images (left) and zoom of the penumbra region
(right). Both architectures provide almost identical results. The first row
shows the original Hinode observations. The second row shows the syn-
thetic continuum image in the SIR inversions. The third row refers to the
data after the PCA deconvolution process. The fourth row is the synthe-
sis in the model inferred by the neural network. The last row shows the
e↵ect of convolving with the Hinode PSF.

4.3. Comparison with standard inversions

It turns out di�cult to compare the output of the neural network
with standard inversions because the output of both methods is
fundamentally di↵erent. In the case of standard SIR inversions,
one obtains the average empirical atmosphere that produces a
good fit to the profiles in a pixel. In the case of the neural ap-
proach, the training was done by injecting the Stokes profiles
degraded with the PSF and producing the physical conditions
rebinned to the spatial resolution of Hinode. The inferred model
atmospheres from both approaches do not need to be either sim-
ilar or compatible.
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Fig. 6. Predicted physical properties of AR10933 using the encoder-decoder network.

from the synthesis in the models inferred from the neural net-
work goes up to 13.58%, very close to the contrast quoted for
high-resolution synthetic observations obtained from 3D MHD
simulations (e.g., Danilovic et al. 2008). As a test for consis-

tency, when the continuum synthetic image is convolved again
with the Hinode PSF, we obtain a contrast of 6.09%.
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Fig. 6. Predicted physical properties of AR10933 using the encoder-decoder network.

from the synthesis in the models inferred from the neural net-
work goes up to 13.58%, very close to the contrast quoted for
high-resolution synthetic observations obtained from 3D MHD
simulations (e.g., Danilovic et al. 2008). As a test for consis-

tency, when the continuum synthetic image is convolved again
with the Hinode PSF, we obtain a contrast of 6.09%.
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Fig. 13. Like Fig. 12 but for Stokes V .

end we use the inferred maps at the seven optical depth surfaces
and generate a smooth model using spline interpolation. This
model is then fed to SIR to return the emerging Stokes profiles.
We warn the reader that this comparison is somehow misguided
and one should not conclude that our results are wrong just be-
cause the SIR synthesis in the inferred models does not perfectly
fit the observed profiles. This behavior is due to, at least, two
reasons. The first one is that the inferred atmospheric model is

compensated for the Hinode PSF. This e↵ect is also present in
the inversion of the deconvolved data. The second reason is that
the neural network is trained to return average atmospheric mod-
els per pixel, and we know that the synthetic Stokes profiles in
the average model is di↵erent from the average of the synthetic
Stokes profiles.

With all these caveats in mind, some examples are displayed
in Fig. 12 for Stokes I and in Fig. 13 for Stokes V for five rep-
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Fig. 14. Physical properties displayed in geometric height for a cut at position X = 4000 in the map of the active region AR10933. They have been
obtained with the encoder-decoder architecture.

resentative pixels and the two architectures. We show the origi-
nal observation in colored circles, the result of the SIR inversion
in black dashed line and the inversion obtained with the decon-
volved data in black solid line. The profile synthesized in the
neural approach is shown in solid color line (in di↵erent color

for each panel) and the result convolved again with the Hinode
PSF in dashed color line. This figure shows that SIR, by con-
struction, correctly fits the observed profiles. The profiles of the
inversion of the deconvolved maps show a much larger contrast
(dark regions become darker and bright regions become brigther)
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Fig. 13. Like Fig. 12 but for Stokes V .

end we use the inferred maps at the seven optical depth surfaces
and generate a smooth model using spline interpolation. This
model is then fed to SIR to return the emerging Stokes profiles.
We warn the reader that this comparison is somehow misguided
and one should not conclude that our results are wrong just be-
cause the SIR synthesis in the inferred models does not perfectly
fit the observed profiles. This behavior is due to, at least, two
reasons. The first one is that the inferred atmospheric model is

compensated for the Hinode PSF. This e↵ect is also present in
the inversion of the deconvolved data. The second reason is that
the neural network is trained to return average atmospheric mod-
els per pixel, and we know that the synthetic Stokes profiles in
the average model is di↵erent from the average of the synthetic
Stokes profiles.

With all these caveats in mind, some examples are displayed
in Fig. 12 for Stokes I and in Fig. 13 for Stokes V for five rep-
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Computational Seismic Holography of Acoustic Waves in the Solar Interior 19

observations of the near hemisphere for at least this period before correlation statistics can
begin to accumulate.
The first far-side seismic maps, based on 2×2-skip acoustics were published by
Lindsey & Braun (2000a), computed from helioseismic observations by SOHO/MDI. The
Solar Oscillations Investigation (SOI) at Stanford University implemented a synoptic far-side
seismic monitor using the 2×2-skip algorithm in early 2001, which continued to operate until
the recent expiration of SOHO/MDI in early 2011.

PUPIL
PUPIL

PHOTOSPHERE

EARTH

FOCUS

Fig. 9. Diagram of ray paths and matching wave-front geometries representing 2×2-skip
phase-correlation holography of the far (top) hemisphere of the Sun from observations over a
pupil in the near (bottom) hemisphere.

The 2×2-skip algorithm is only sensitive to active regions within ∼50◦ of the antipode of disk
center in the near hemisphere. Braun & Lindsey (2001) extended the algorithm to cover the
full far hemisphere by incorporating 1×3-skip acoustics. Both the GONG and the SDO now
have synoptic far-side seismic monitors covering the full far hemisphere of the Sun.

99Computational Seismic Holography of Acoustic Waves in the Solar Interior
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CURRENT FARSIDE PREDICTIONS

Figure 1. Composite maps of the Sun’s far hemisphere (yellow) and the line-of-sight magnetic
field (blue) show NOAA AR11498 passing the far-side meridian (top), approaching the east
limb (middle), and rotating into direct view (bottom) in the near hemisphere. The phase cor-
relation signature is rendered in terms of the travel time perturbation, τ , encountered by the
echo from a magnetic region as compared to the quiet Sun.

The algorithm simply maps this phase as a function of location in the Sun’s far hemi-

4



U-NET ARCHITECTURE



INJECTING ACTIVE REGIONS

Figure 1: Analysis of 2112 artificial farside maps. Top panel: Integrated probability of the artificial

acoustic source as a function of the seismic strength. The vertical dotted line is the threshold for

the identification of a farside active region based on its seismic strength, whereas the horizontal

dashed line is the threshold for the detection of an active region using the neural network. Middle

panel: Performance of the neural network (solid line with asterisks) and the traditional method

(dashed line with asterisks) from the analysis of 1056 artificial farside maps with FWHM=15� and

different values of A. Bottom panel: Performance of the neural network (solid line with asterisks)

and the traditional method (dashed line with asterisks) from the analysis of 1056 artificial farside

maps with A = �9 s and different values of FWHM.
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OUR PREDICTIONS

Figure 2: Detection of the farside active region NN-2019-003 (FS-2019-001). Left column: far-

side phase-shift maps obtained from 5 days of HMI Doppler velocity data. Bottom left of the

panel shows the seismic strength of the strongest feature. Middle column: STEREO 171 Å data.

Colour contours indicate the active regions detected by the neural network (red) and by traditional

approach (blue). Right column Probability map, obtained as the output of the neural network.

Bottom left of the panel shows the integrated probability of the strongest feature. Each row corre-

sponds to a different time, indicated at the top part of the right panel.
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OUR PREDICTIONS

Figure 3: Detection of the farside active region NN-2018-003. Same description as Figure 2.
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classification of solar structures



CLASSIFICATION
J.A. Armstrong and L. Fletcher

Figure 1. The setup of our 13 layer CNN inspired by VGG networks (Simonyan and Zisserman, 2014) where the arrows between
each block indicate the flow of data in the feedforward process. The blocks are colour-coded to reflect their purpose. Orange,
green, yellow and blue are all convolutional layers which have 64, 128, 256 and 512 trainable feature maps respectively. The
inside of one of the convolutional layers is shown which is the same for all convolutional layers – the data undergoes a convolution
followed by batch normalisation followed by the activation via a ReLU function. The red circles correspond to the max pooling
layers. The grey block corresponds to the classifier at the end of the network. The example here is of a prominence in H↵ from
Hinode/SOT being classified correctly.

of these layers increases towards the output of the network as the model is detecting more and more complex
features and a larger number of convolutions to look at will help to distinguish between these features.

“Batch normalisation” (Io↵e and Szegedy, 2015) is applied to the output from the convolution operation.
This is a technique used to increase the stability of our network and normalises the output of the convolution
calculation around a batch mean (�) and standard deviation (�) via the equation:

y = � ⇥
x� E[x]p
�(x) + ✏

+ �, (4)

where x is the output feature maps and y is the batch normalised feature maps, ✏ is a small positive constant
used to stop the denominator going to zero and � is the sample variance of the feature maps being normalised.
This is beneficial as it reduces the dynamic range of the data at the cost of two extra trainable parameters
(�,�) and speeds up training su�ciently (if the batch size is large enough). Equation 4 can then be easily
manipulated during backpropagation to return x such that the true feature maps can be recovered from the
batch normalised feature maps.

After batch normalisation, the data undergoes a non-linear transformation known as an “activation func-
tion”. This is a function which shifts the output of the batch normalisation onto a di↵erent distribution which
determines the signal being passed onto the next layer of the network. For this function, we use the rectified
linear unit (ReLU; Nair and E. Hinton, 2010) function:

�(x) = max(0, x). (5)

This is chosen due to the sparsity of the output increasing training speed and its ability to avoid the
vanishing gradient problem. The vanishing gradient problem is when the gradients of the loss function during
backpropagation becomes so small that they tend to zero and so the optimiser gets stuck in the loss space.
This is avoided when using ReLUs since the gradients of these will never be small:

d�

dx
= H(x), (6)

where H(x) is the Heaviside function. However, ReLUs can get stuck if the batch normalised data is all
negative but the network should learn that the batch normalisation parameters should not shift the data into
a distribution where it is all negative.

Between the deep layers of the network, there are occasionally maxpooling layers (shown by the red circles
in Figure 1. This is used as a downsampling of the data to increase computational e�ciency by reducing the
number of parameters, and since this results in less spatial information about the features this will reduce
over-fitting and increase translational invariance due to the reduction of the pixel-location-specific data. This

SOLA: slicv2.tex; 3 June 2019; 0:31; p. 6

Fast Solar Image Classification

Figure 3. Validation on unseen images from Hinode/SOT imaged in H↵. This shows our network correctly identifying images
with flare ribbons (left column), prominences (middle columns) and sunspots (right columns) in images it has never seen before.

This gives a validation accuracy of 99.92% (1 out of the 1318 images are misclassified, see Appendix A).
As the classification percentage is not 100%, we can conclude that our model has not encapsulated the
entirety of the space containing the function which maps the input of our network to the output i.e. our
minimised loss function is not the optimally minimised loss function, but has learned enough of this space
to generalise to unseen data. The near-perfection of this model is impressive and not to be understated, as
a perfect classifier for image data is di�cult to come by due to the possibility of distortions and artifacts
leading to misclassification. A further, deeper exploration of the hyperparameter space may lead to even
better classification since we have only chosen discrete steps in this space.

Classification percentage on a validation set is however not statistically robust enough to determine whether
or not our classifier has actually learned what we wanted it to. This can be a result of having an uneven split
in the validation set between the classes or having a strongly biased classification task. To deal with this, we
calculate the “confusion matrix” for our classifier. This is a matrix whose elements correspond to what class
an image actually belongs to compared to what class the network classified it in. This is shown in Table 1.
This tells us about di↵erent kinds of errors our network makes. The predictions our network made can now
be split into 4 categories for each features:

i) True positives: the number of images containing the feature we are interested in that are correctly
identified as containing that feature. That is, for a feature i that is of interest to us:

tpi = cii, (9)

where cij is an element of the confusion matrix.
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physical conditions in flares



INVERTIBLE NEURAL NETWORKS

Ardizzone et al. (2018)



FLARE RIBBON

Osborne, Armstrong & Fletcher (2019)
atmosphere to produce a best-fit line profile. Our INN first learns
the forward process from our training data, but due to the
bijective nature of the mapping, a perturbative solution approach
is not required, as all of the information lost in the forward
process can be restored through the latent space. The models that
take this “inversion engine” approach, such as STiC (de la Cruz
Rodriguez et al. 2019) and NICOLE (Socas-Navarro et al.
2015), are effectively performing a walk through the latent space
guided by their “inversion engines.” There is no guarantee of
solution uniqueness from those approaches, as the entire latent
space is not visited. With the INN approach, the useful extent of
the latent space is learned during training, and it is therefore
trivial to span the latent space with multiple draws of the unit
multivariate normal distribution.

As our INN was trained on RADYN data, it is important to
stress that it can only generate RADYN-like solutions, and this
should be taken into account when analyzing any atmospheric
inversions performed. The RADYN training atmospheres also
include the specific assumption of heating and nonthermal
excitations by an electron beam from the corona. As a
counterpoint to this, it is important to note that the INN does

not simply ingest the grid of RADYN simulations and return a
closely matched or interpolated template (an approach used, for
example, by Beck et al. 2015 in the fast inversion of Ca II
8542Å spectropolarimetric data). Instead, the INN has learned
a bijective mapping between the input space containing the
atmospheric parameters and the output space containing the
line profiles and the explicit latent space. In the inverse process,
the line profiles are complemented by the latent space to
remove ambiguities due to information lost in the forward
process. The model’s validation on the unseen testing set
should ensure that the atmospheres recovered are physically
reasonable, and that the model has learned to relate the
emergent line profiles with the properties of the atmosphere.
The INN method is fast, as it “front-loads” a large portion of

the computational work by requiring a large training set in the
form of RADYN simulations followed by approximately 1 day
of training on an NVIDIA GTX1050Ti GPU. The result of this
precomputation is that inference is then extremely rapid while
still drawing on a very complex physical model. The complex
model is needed for the flare problem, where assumptions of
hydrostatic and local thermodynamic equilibrium cannot hold,

Figure 8. Inversion of the pixel on the flare ribbon. The top panels show the atmospheric parameters obtained from the inversion. The top left panel shows the electron
density and temperature plotted on log scales, and the top right panel shows the net velocity flow in our plasma. The plots were made by sampling the latent space
20,000 times and plotting the results of the inversions as a two-dimensional histogram. The bins with the greatest density are the most likely values for the parameters
at a certain height. The black dotted lines show the median profiles for each quantity. The bottom panels show the lines that were inverted. The blue dotted lines are the
true line profiles. The black bins are the round-trip generation of the spectral lines produced by performing the forward process on the sets of atmospheric parameters
we obtain from the inversion.
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Other examples…



GENERATIVE ADVERSARIAL NETWORKS



FACES
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SUPER RESOLVE GAMES



RAINDROP REMOVAL

Quian et al. (2018)



MULTIFRAME BLIND 
DECONVOLUTION

GENERATIVE ADVERSARIAL NETWORKS

courtesy of Y. Kawabata
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GAN recovery of galaxy features 3

original degraded GAN recovered deconvolved

PSF=2.5”, 10σ

Figure 2. We show the results obtained for one example galaxy. From left to right: the original SDSS image, the degraded image with a
worse PSF and higher noise level (indicating the PSF and noise level used), the image as recovered by the GAN, and for comparison, the
result of a deconvolution. This figure visually illustrates the GAN’s ability to recover features which conventional deconvolutions cannot.

original degraded GAN recovered deconvolved

PSF=2.5”, 2σ

PSF=2.5”, 5σ

PSF=1.8”, 10σ

original degraded GAN recovered deconvolved

PSF=2.5”, 5σ

PSF=2.5”, 5σ

PSF=1.8”, 10σ

original degraded GAN recovered deconvolved

PSF=1.8”, 5σ

PSF=2.5”, 5σ

PSF=2.5”, 10σ

original degraded GAN recovered deconvolved

PSF=2.5”, 5σ

PSF=2.5”, 10σ

PSF=1.8”, 5σ

Figure 3. We show some further representative results for di↵erent galaxy types and with various levels of degradation. In each row, we
show with the same layout as Figure 2. Since the GAN has been trained on images of galaxies with similar properties, it is able to recover
details which the deconvolution cannot, such as star-forming regions, dust lanes and the shape of spiral arms. The top two panels are
examples of spiral galaxies. The bottom-left panel shows early-type galaxies (including a dense cluster). The bottom-right panel shows
galaxy mergers; note in particular that the GAN reconstruction makes it easier to identify these systems as merging, as opposed to being
undisturbed or superpositions . For more detailed results, see Appendix A.

MNRAS 000, 1–5 (2017)
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2 METHOD

Our general method is agnostic as to the specific machine
learning algorithm used. In this paper, we choose to use con-
ditional Generative Adversarial Networks (GAN), a state-
of-the-art deep learning algorithm for image-to-image trans-
lation. In this work, we adopted a standard GAN architec-
ture; therefore we only briefly introduce GAN and interested
readers can consult Reed et al. (2016) and Goodfellow et al.
(2014) for details.

In the training phase, the GAN takes as input a set of
image pairs—in our case, one image which is degraded (by
this we mean: convolved with a worse PSF, or blurred, and
with added noise) and the same image without such degrada-
tion. The GAN then tries to “learn” to recover the degraded
image by minimizing the di↵erence between the recovered
image and the non-degraded image. The function that mea-
sures the di↵erence between the two images, which is often
called the loss function, is often something simple such as the
Euclid distance but can be a more sophisticated function. In
the case of a GAN, this function is another neural network
(hence the name adversarial) whose goal is to distinguish
the recovered image from a non-degraded image. These two
neural networks are trained at the same time. This allows
the system to learn sophisticated loss functions automati-
cally without hand-engineering.1 In the testing phase, the
GAN takes a di↵erent set of degraded images and recovers
them.

One remaining challenge is how to generate pairs of im-
ages with and without degradation for the training phase. In
our framework, we take advantage of the centuries of study
of the noise introduced by the telescope and the atmosphere
to weakly supervise a GAN network by simulating the blur-
ring process automatically. This allows us to easily harvest
a large training set automatically without any human in-
tervention. Furthermore, it allows us to automatically scale
our system, and arguably achieve better quality, when future
large-scale sky survey data from e.g. LSST (LSST Science
Collaboration et al. 2009) or Euclid (Laureijs et al. 2011)
are available. We outline the method in Figure 1.

We select a sample of 4,550 galaxies from the Sloan
Digital Sky Survey Data Release 12 (York et al. 2000; Alam
et al. 2015) in the redshift range 0.01 < z < 0.02 and con-
duct 10⇥ cross validation for all of our experiments (each
fold contains 4,105 images for training and 455 for testing).
We obtain the g, r and i-band images for these objects and
process them using an asinh stretch (y = asinh(10x)/3) to
produce 3-band RGB images. The transform to asinh stretch
rather than keeping the linear data follows the best practice
of making the range of input values for a neural network
comparable across images. This step has been shown to help
make the training procedure faster and easier in other ap-
plications (Sola & Sevilla 1997). We note that this process
involved clipping extreme pixel values and in principle makes
it impossible to fully recover the original flux calibration; ex-
ploring how to avoid this while not degrading the neural net
training performance is an interesting project.

1 It is known that if one uses Euclid distance for image recov-
ery, this often produces blurred images because Euclid distance
is uniform over the whole image (Reed et al. 2016), thus a more
sophisticated loss function could improve the system.

Original Image

Degraded Image

Artificial  
Degrading

Data Prep. Training of GAN

Recovered ImageGenerator

Original Image

Discriminator

(Original Image, Degraded Image) or 
(Recovered Image, Degraded Image)

Figure 1. Schematic illustration of the training process of our
method. The input is a set of original images. From these we
automatically generate degraded images, and train a Generative
Adversarial Network. In the testing phase, only the generator will
be used to recover images.

original degraded GAN recovered deconvolved

PSF=2.5”, 5σ

PSF=2.5”, 5σ

Figure 4. We show three examples where the GAN reconstruc-
tion fails at some level. Two of the three can be accounted for by
the fact that the objects in question are rare, and so the training
set did not su�ciently prepare the GAN to deal with them. In the
top row is a rare kinematic structure (Buta & Combes 1996). The
middle row is a barred spiral whose outer arms were so far below
the noise that they could not be reconstructed. The bottom row
is a tidally warped edge-on disk, a class of galaxies su�ciently
rare that the training did not prepare the GAN to recognise it.

In order to test the performance of the GAN, we gen-
erate a grid of training sets from the galaxy sample. In
each training set, we convolve the images with a Gaus-
sian PSF with a full-width at half-maximum (FWHM) of
FWHM=[1.4, 1.8, 2.0, 2.5] 00. The median seeing of SDSS im-
ages is ⇠ 1.400 so we explore images of e↵ectively the same
resolution all the way to a significantly worse seeing of 2.500.
After convolving the images with a Gaussian filter represent-
ing worse seeing, we adjust the noise level, first restoring it
to that of the original image, and then increasing it so that
�new = [1.0, 1.2, 2.0, 5.0, 10.0]�original to mimic shallower im-
ages. We train the GAN using open source code released by
Reed et al. (2016) with TITAN X PASCAL GPUs. Training
finishes in 2 hours per setting per fold (200 hours in total).
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CLASSIFYING GALAXIES AT HIGH REDSHIFT

VELA DL BNs 9

Figure 2. Random examples of simulated F160W Candelized images in the 3 phases discussed in this work. The image size is
3.8” ⇥ 3.8”. The top row shows pre-BN galaxies, the middle row are galaxies in the BN phase, and the bottom row are post-BN
objects. The images have been rescaled so that they span the same range of luminosities in the 3 phases.

Figure 3. Architecture of the deep network used for classification in this work. The network is a standard and simple CNN
configuration made of 3 convolutional layers followed by pooling and dropout.

VELA DL BNs 11

ing process with random luminosities and, as seen in
table 2, the BN phase can happen at very di↵erent red-
shifts and can have very di↵erent durations. Secondly,
it shows that despite the relatively low global accuracy,
the confusion seems to come essentially from the snap-
shots taken at the transition phases. This is important
because it means that when the machine misclassifies it
is not fully random. The misclassification therefore is a
reflection of the di�culty to define the di↵erent phases.
It is also worth noticing that the scatter due to di↵erent
camera orientations is generally not large (⇠ 0.1� 0.2 in
terms of probability). It suggests a mild impact of the
projection in the classification accuracy.

5.2. Impact of camera orientation

We investigate this further in figure 7, which shows
the confusion matrix divided by camera orientation. De-
spite some statistical fluctuations, no significant di↵er-
ences are appreciated as already suggested by the results
shown in figure 6. This is also quantified in figure 8,
which shows the global accuracy as a function of the
camera number (see table 1 for an explanation of the
di↵erent numbers). The figure confirms that there is no
systematic trend with the orientation. The global accu-
racy increases equally for all cameras when the proba-
bility threshold is increased.

5.3. Calibration of observability timescales

In fact, in view of applying the model to real data,
probably the most interesting property to investigate is
whether we can calibrate the observability timescales of
the features learned by the classifier. In other words,
what is the typical time window in which the network
detects BNs. This is important because it allows us to
better interpret the classification in terms of an evolu-
tionary sequence and also to compute a BN rate from the
observations as usually done for mergers typically. To do
so, we take the test sample and classify all galaxies in the
3 classes according to the output probabilities. We sim-
ply add each image to the class of maximum probability
and require that the probability value is larger than 0.5.
We then compute, for each galaxy, the time di↵erence
with the main BN phase (computed as a fraction of the
Hubble time at the BN peak, i.e 1/H(t), H(t) being the
Hubble constant. Figure 9 shows the histograms for the
3 classes. We confirm that the 3 classes tend to probe a
di↵erent regime although with some overlap as expected
from the results of the previous sections. Pre-BN galax-
ies are on average selected ⇠ 0.40/H(t) before the event
and post-BN galaxies are typically observed ⇠ 0.80/H(t)
after the compaction. The galaxies classified are cen-
tered on the BN phase (0.05 ± 0.3 Hubble times).

Figure 5. Normalized confusion matrix of the 3-label classi-
fication on a test dataset not used for training nor validation.
The y-axis shows the true class from the simulation meta-
data, the x-axis is the predicted class. From top to bottom,
we show the e↵ect of increasing the probability threshold to
select the galaxies belonging to a given class.

Although there is some overlap between the di↵erent
histograms, it is worth noticing that all galaxies which
passed the BN phase by more than half a Hubble time
are classified as post-BN galaxies. Also there are no
galaxies classified as BN or pre-BN objects for which
the event is more than ⇠ 0.5 Hubble times away. This
means that our classifier can indeed establish some tem-



TRANSFER LEARNING FOR FUTURE SURVEYS

Knowledge transfer of Deep Learning for galaxy morphology 3

Figure 1. Examples of 6 galaxies observed by SDSS-DR7 (left panels) and DES survey (right panels). The cutouts are zoomed in to
1/2 of the size of the images used for training the models. They have a variable angular size of approximately 5⇥R90, where R90 is the
Petrosian radius of each galaxy (shown in each cutout - in arcsec -, as well as their redshift). The galaxies are randomly selected from
the common sample of the two surveys, with the only requirement of having high probability of being disk, edge-on or barred galaxies.
The better quality of DES images reveals with higher detail some galaxy features, such as bulge component or spiral arms.

2.2 Image data: Dark Energy Survey

The images used to test how DL models can adapt to new
surveys characteristics come from the Dark Energy Survey
(DES; DES Collaboration et al. 2016). DES is an interna-
tional, collaborative e↵ort designed to probe the origin of
the accelerating universe and the nature of dark energy by
measuring almost the 14-billion-year history of cosmic ex-
pansion with high precision. The survey will map ⇠ 300 mil-
lion galaxies. This huge number demands to find automated
methods for morphological classification of galaxies.

DES is a photometric survey utilizing the Dark En-
ergy Camera (DECam; Flaugher et al. 2015) on the Blanco-
4m telescope at Cerro Tololo Inter-American Observatory
(CTIO) in Chile to observe ⇠5000 deg2 of the southern sky
in five broad-band filters, g, r, i, z and Y (⇠ 400 nm to ⇠1060
nm) with a resolution of 0.263 00/pixel. The magnitude lim-
its and median PSF FWHM for the first year data release
(Y1A1 GOLD) are 23.4, 23.2, 22.5, 21.8, 20.1 mag and 1.25,
1.07, 0.97, 0.89, 1.07 arcsec, respectively (from g to Y, see
Drlica-Wagner et al. 2017 for a detailed description of the
survey). In this work we use standard DES cutouts from the
internal Y1A1 data release.

2.3 Morphological catalogue: Dark Energy
Camera Legacy Survey

Unfortunately, there is no morphological classification avail-
able for DES galaxies to date. Instead, we take advantage of
the Galaxy Zoo Dark Energy Camera Legacy Survey (DE-
CaLS) morphological catalogue to assign a classification for
DES galaxies. This is necessary for quantifying the perfor-
mance of the DL models, as well as for labeling the training
sample in the domain adaptation step (see section 3). The
DECaLS survey (Dey et al. 2018) is observed with the same
camera as the DES survey and with a similar depth (g=24.0,
r=23.4, z=22.5 mag at 5� level), and so (average) observ-
ing conditions are very similar to the DES ones. The DE-
CaLS Galaxy Zoo catalogue (private communication) con-
tains morphological classifications for ⇠ 32,000 objects up
to z ⇠ 0.15. The redshift range and most of the classifica-
tion tasks are the same as for the GZ2 catalogue, which was
used for training the DL models from DS18. Therefore, it is

the perfect catalogue to test the performance of the SDSS-
based DL models on DES images. The main di↵erence of
DES/DECaLS with respect to SDSS images is the use of
a larger telescope and better seeing conditions, which allow
to get deeper images (⇠ 1.5 mag) with significantly better
data quality than SDSS. This e↵ect can be seen in Figure 1,
where we show 6 examples of galaxies as observed by SDSS
and DES.

The DES sample used in this work are the 4,938 galaxies
with a DECaLS - Galaxy Zoo classification (obtained with
a match of 1 arcsec separation). Note that, since our final
aim will be to provide a morphological catalogue for DES, we
use the DECaLS classification catalogue as the ground truth
to test (and train) our models on DES images. Given the
similarities between DES and DECaLS surveys, the Galaxy
Zoo classifications will be identical or very similar, which
allows us to perform this exercise.

3 METHODOLOGY

The objective of this letter is to assess if knowledge acquired
by a DL algorithm from an existing survey can be exported
to a new dataset with di↵erent characteristics in terms of
depth, PSF and instrumental e↵ects. This work aims to be a
first proof of concept and not a full morphological classifica-
tion catalogue. The redshift distribution of the DES galaxies
used in this work is very similar to the SDSS (see 2.3), so
no evolution e↵ects are included: we are only changing the
instrument and survey depth (by ⇠ 1.5 mag). We leave for a
forthcoming work a thoughtful study on the brightness and
redshift e↵ect on the models performance.

We have focused our analysis on the binary questions
from the GZ2 scheme, since they are the easiest to evaluate.
We note that there is one model per question. The three
classification tasks that we evaluate are:

Q1: Galaxies with disks/features versus smooth galax-
ies. We consider as positive examples galaxies with disk or
features (labeled as Y=1 in our input matrix). Q2: Edge-on
galaxies versus face-on galaxies. Edge-on galaxies are consid-
ered positive cases. Q3: Galaxies with bar signature versus
galaxies with no bar presence. Barred galaxies are positive
cases.
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Figure 2. True positive rate (TPR, i.e., fraction of well classified positive cases) vs. false positive rate (FPR, i.e., fraction of wrongly
classified positive cases) for di↵erent Pthr values for the three classification task studied in this work, as stated in the legend. We show
the performance of our DL models trained with SDSS galaxies applied to SDSS images (blue dashed line), applied to DES images with no
training on DES data at all (green line) and applied to DES data after a domain adaptation step using a small number of DES galaxies
for re-training the models (red line). The number of galaxies used in the training for each question are shown in the legend. The results
are comparable to the ones obtained for SDSS but, loading the SDSS weights to the DES-models training, helps reducing the training
sample size at least one order of magnitude. The ‘apparent’ better performance of the DES model with respect to the SDSS one for Q3
is caused by the small size of the barred test sample (see Table 1).

In order to assess how much knowledge from one survey
can be exported to another, we carry out two steps:

(i) We apply the models trained on SDSS directly to DES
images, without any modification at all, and study their per-
formance on DES data. Since no training sample is used, all
galaxies with a known classification can be used for testing.

(ii) In a domain adaptation step, we train the machines
with a small sample of DES galaxies (300-500) transfer-
ring the knowledge from the SDSS model. This transfer
consists on loading the weights (i.e. the features) learned
by the SDSS models for all the layers -both convolutional
filters and dense layer- and then re-train with the DES
images. The code used in this work is publicly available
at https://github.com/HelenaDominguez/DeepLearning. We
test the updated models on a sample of DES galaxies not
used for training. This limits the statistics, specially in the
case of Q3 (bar signature, see discussion below).

To keep the methodology as similar as possible to DS18,
the input for the models are the same as in DS18, i.e.
424⇥424 pixel size images (from DES in this case), which
are down-sampled into (69, 69, 3) RGB matrices, with each
number representing the flux per pixel at each filter (g, r,
i). The angular size of the images is variable, approximately
10⇥R90, where R90 is the Petrosian radius of each galaxy
(taken from SDSS). For test (i), the algorithm applies the
weights learned by the SDSS models and returns a probabil-
ity value for each task. For test (ii), we train the models in
binary mode and, following DS18, we only use in the training
DES galaxies with a robust classification, i.e. galaxies with
a large agreement - a(p) - between Galaxy Zoo classifiers
(roughly corresponding to P > 0.7 in one of the two answers)
and with at least 5 votes. Reader can refer to DS18 for a
description of the agreement parameter, a(p). This method-
ology has demonstrated to be a more e�cient way to train
the models, but it strongly limits the statistics of our train

and test samples. For example, only 624 out of 4938 galax-
ies (⇠ 13%) have Pedge�on > 0.7 and at least 5 votes. This
number is even smaller (103, ⇠ 2%) for the barred galaxies.
Since we need at least 300 galaxies for training Q3 (and the
training sample should include a reasonable number of pos-
itive cases), we only have 9 barred galaxies left for testing
our models (see Table 1).

4 RESULTS

We use a standard method for testing the performance of our
models: receiver operating characteristic (ROC) curve, true
positive rate (TPR), precision (P) and accuracy values (e.g.,
Powers & Ailab 2011, Dieleman et al. 2015, Barchi et al.
2017). For binary classifications, where only two input values
are possible (positive or negative cases), the true positives
(TP) are the correctly classified positive examples. One can
define, in an analogous way, true negatives, false positives,
and false negatives (TN, FP, FN, respectively). The true
positive rate (TPR), false positive rate (FPR), precision (P)
and accuracy (Acc) are expressed as:

TPR =
TP

(TP + FN) ; FPR =
FP

(FP + T N)

P =
TP

(TP + FP) ; Acc =
TP + T N

Total

(1)

TPR is a completeness proxy (how many of the true exam-
ples are recovered), precision is a contamination indicator
(what fraction of the output positive cases are really posi-
tive) and accuracy is the fraction of correctly classified ob-
jects among the test sample. Since the output of the model is
a probability (ranging form 0 to 1), a probability threshold
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The recent Nobel-prize-winning detections of gravitational waves from merging black holes and the
subsequent detection of the collision of two neutron stars in coincidence with electromagnetic observations
have inaugurated a new era of multimessenger astrophysics. To enhance the scope of this emergent field of
science, we pioneered the use of deep learning with convolutional neural networks, that take time-series inputs,
for rapid detection and characterization of gravitational wave signals. This approach, Deep Filtering,
was initially demonstrated using simulated LIGO noise. In this article, we present the extension of Deep
Filtering using real data from LIGO, for both detection and parameter estimation of gravitational waves
from binary black hole mergers using continuous data streams from multiple LIGO detectors. We demonstrate
for the first time that machine learning can detect and estimate the true parameters of real events observed by
LIGO. Our results show that Deep Filtering achieves similar sensitivities and lower errors compared
to matched-filtering while being far more computationally efficient and more resilient to glitches, allowing
real-time processing of weak time-series signals in non-stationary non-Gaussian noise with minimal resources,
and also enables the detection of new classes of gravitational wave sources that may go unnoticed with existing
detection algorithms. This unified framework for data analysis is ideally suited to enable coincident detection
campaigns of gravitational waves and their multimessenger counterparts in real-time.

Keywords: Deep Learning, Convolutional Neural Net-
works, Gravitational Waves, LIGO, Time-series Signal
Processing, Classification and Regression

I. INTRODUCTION

The first detection (GW150914) of gravitational waves
(GWs), from the merger of two black holes (BHs), with
the advanced Laser Interferometer Gravitational-wave
Observatory (LIGO) [1] has set in motion a scientific
revolution [2] leading to the Nobel prize in Physics in
2017. This and subsequent groundbreaking discover-
ies [3–6] were brought to fruition by a trans-disciplinary
research program at the interface of experimental and
theoretical physics, computer science and engineering
as well as the exploitation of high-performance com-
puting (HPC) for numerical relativity simulations [7–9]
and high-throughput computing facilities for data analy-
sis [10, 11].

The recent detection of the binary black hole (BBH)
merger (GW170814) with a three-detector network en-
abled new phenomenological tests of general relativity
regarding the nature of GW polarizations, while signif-
icantly improving the sky localization of this GW tran-
sient [6]. This enhanced capability to localize GW tran-
sients provided critical input for the first detection of
GWs from the merger of two neutron stars (NSs) and in
conjunction with follow-up observations across the elec-
tromagnetic (EM) spectrum [12]. This multimessenger

event has finally confirmed that NS mergers are the cen-
tral engines of short gamma ray bursts [13–18].

Matched-filtering, the most sensitive GW detection al-
gorithm used by LIGO, currently targets a 3D parameter
space (compact binary sources with spin-aligned com-
ponents on quasi-circular orbits) [19–21]—a subset of
the 8D parameter space available to GW detectors [22–
26]. Recent studies also indicate that these searches
may miss GWs generated by compact binary populations
formed in dense stellar environments [25, 27–29]. Ex-
tending these template-matching searches to target spin-
precessing, quasi-circular or eccentric BBHs is compu-
tationally prohibitive [30].

Based on the aforementioned considerations, we need
a new paradigm to overcome the limitations and com-
putational challenges of existing GW detection algo-
rithms. An ideal candidate would be the rapidly advanc-
ing field called Deep Learning, which is a highly scal-
able machine learning technique that can learn directly
from raw data, without any manual feature engineering,
by using deep hierarchical layers of “artificial neurons”,
called neural networks, in combination with optimiza-
tion techniques based on back-propagation and gradient
descent [31, 32]. Deep learning, especially with the aid
of GPU computing, has recently achieved immense suc-
cess in both commercial applications and artificial intel-
ligence (AI) research [31, 33–38].

Our technique, Deep Filtering [39], employs
a system of two deep convolution neural networks
(CNNs [40]) that directly take time-series inputs for both

ar
X

iv
:1

71
1.

03
12

1v
1 

 [g
r-

qc
]  

8 
N

ov
 2

01
7

4

FIG. 3. Architecture of deep convolutional neural network.
This is the dilated 1D CNN used as the predictor which out-
puts the component masses of the BBH system. The classifier
has the same architecture, except for a softmax layer added at
the end which outputs the probability for the presence of a GW
signal. The input is a time-series vector of length 8192 cor-
responding to 1s of data sampled at 8192Hz. The classifier is
applied separately to continuous data streams from each detec-
tor using a sliding window. If the classifier detects a signal in
coincidence across multiple detectors, then the inputs are fed to
the predictor which estimates the parameters of the GW source.

SNR distributed in the range 4 to 15, we found that the
performance of prediction can be quickly maximized for
low SNR while retaining performance at high SNR. We
first trained the predictor on the datasets labeled with the
BBH masses and then copied the weights of this network
to initialize the classifier and then trained it on datasets
having 90% pure random noise inputs, after adding a
softmax layer. This transfer learning procedure, similar
to multi-task learning, decreases the training time for the
classifier and improves its sensitivity.

III. RESULTS

The sensitivity (probability of detecting a true signal)
of the classifier as a function of SNR is shown in Fig. 4.
We achieved 100% sensitivity when SNR is greater than
10. The false alarm rate was tuned to be less than 1%,
i.e., 1 per 100 seconds of noise in our test set was clas-
sified as signals. Given independent noise from mul-
tiple detectors, this implies our 2-detector false alarm

FIG. 4. Sensitivity of detection with real LIGO noise. The
curve shows the sensitivity of detecting GW signals injected
in real LIGO noise (from LOSC) using Deep Filtering and
matched filtering with the same template bank used for train-
ing. Note that the SNR is on average proportional to 10±1.5
times the ratio of the amplitude of the signal to the standard
deviation of the noise for our test set. This implies that we are
capable of detecting signals significantly weaker than the back-
ground noise.

rate would be less than 0.01%, when the classifier is
applied independently to each detector and coincidence
is enforced. Although the false alarm rate can be fur-
ther decreased by tuning the fraction of noise used for
training or by checking that the predicted parameters
are consistent, this may not be necessary since running
matched-filtering pipelines with a few templates close
to our predicted parameters can quickly eliminate these
false alarms.

Our predictor was able to successfully measure the
component masses given noisy GW signals, that were not
used for training, with an error lower than the spacing be-
tween templates for optimal matched-filter SNR ∏ 15.0.
The variation in relative error against SNR is shown in
Fig. 5. We observed that the errors follow a Gaussian dis-
tribution for each region of the parameter space for SNR
greater than 10. For high SNR, our predictor achieved
mean relative error less than 10%, whereas matched-
filtering with the same template bank always has error
greater than 10%. This implies that Deep Filtering is
capable of interpolating between templates seen in the
training data.

Although, we trained only on simulated quasi-
circular non-spinning GW injections, we applied Deep
Filtering to the LIGO data streams containing a true
GW signal, GW150914, using a sliding window of 1s
width with offsets of 0.2s through the data around each
event from each detector. This signal was correctly iden-
tified by the classifier at the true position in time and each
of the predicted component masses were within the pub-
lished error bars [2]. There were zero false alarms af-

3

FIG. 1. Sample signal injected into real LIGO noise.
The red time-series is an example of the input to our Deep
Filtering algorithm. It contains a hidden BBH GW signal
(blue) from our test set which was superimposed in real LIGO
noise from the test set and whitened. For this injection, the opti-
mal matched-filter SNR = 7.5 (peak power of this signal is 0.65
times the power of background noise). The component masses
of the merging BHs are 57MØ and 33MØ. The presence of
this signal was detected directly from the (red) time-series in-
put with over 99% sensitivity and the source’s parameters were
estimated with a mean relative error less than 10%.

glitches, since it is well known that the PSD of LIGO is
highly non-stationary, varying widely with time. There-
fore, if Deep Filtering performs well on these test
sets, it would also perform well on data from future time
periods, without being re-trained.

Next, we superimposed different realizations of noise
randomly sampled from the training set of real LIGO
noise from the two events GW151226 and LVT151012
and injected signals over multiple iterations, thus am-
plifying the size of the training datasets. The power of
the noise was adjusted according to the desired optimal
matched-filter Signal-to-Noise Ratio (SNR [43]) for each
training round. The inputs were then whitened with the
average PSD of the real noise measured at that time-
period. We also scaled and mixed different samples of
LIGO noise together to artificially produce more training
data and various levels of Gaussian noise was also added
to augment the training process. However, the testing
results were measured using only pure LIGO noise not
used in training with true GW signals or with signals in-
jected from the unaltered test sets (see Fig. 1).

We used similar hyperparameters to our original
CNNs [39] with a slightly deeper architecture. There
were 4 convolution layers with the filter sizes to 64,
128, 256, and 512 respectively and 2 fully connected
layers with sizes 128 and 64. The standard ReLU ac-
tivation function, max(0, x), was used throughout as the
non-linearity between layers. We used kernel sizes of 16,
16, 16, and 32 for the convolutional layers and 4 for all

FIG. 2. Spectrograms of real LIGO noise test samples. We
used signals injected into real data from the LIGO detectors in
this article, ensuring that the training and testing sets did not
contain noise from the same events. These are some random
examples of real glitches that were present in our test set of
LIGO noise. The Deep Filtering method takes the 1D
strain directly as input and is able to correctly classify glitches
as noise and detect true GW signals as well as simulated GW
signals injected into these highly non-stationary non-Gaussian
data streams, with similar sensitivity compared to matched-
filtering.

the (max) pooling layers. Stride was chosen to be 1 for
all the convolution layers and 4 for all the pooling lay-
ers. We observed that using dilations [44] of 1, 2, 2, and
2 in the corresponding convolution layers improved the
performance. The final layout of our predictor CNN is
shown in Fig. 3.

We had originally optimized this CNN architecture to
deal with only Gaussian noise having a flat PSD. How-
ever, we later found that this model also obtained the
best performance with noise having the colored PSD of
LIGO, among all the models we tested. This indicates
that our architecture is robust to a wide range of noise
distributions. Furthermore, pre-training the CNNs on
Gaussian noise (transfer learning) before fine-tuning on
the limited amount of real noise prevented over-fitting,
i.e., memorizing only the training data without generaliz-
ing to new inputs. We used the Wolfram Language neural
network functionality, based on the open-source MXNet
framework [45], that uses the cuDNN library [46] for ac-
celerating the training with NVIDIA GPUs. The learning
algorithm was again set to ADAM [47] and other details
were the same as before [39].

For training, we used the curriculum learning strategy
in our first article [39] to improve the performance and
reduce training times of the CNNs while retaining perfor-
mance at very high SNR. By starting off training inputs
having high SNR (∏ 100) and then gradually increasing
the noise in each subsequent training session until a final
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