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Parameter inference

Simulating and understanding 
complex system dynamics require 
building conceptual models

Parameterised models need to be calibrated to measured data 

Data-driven model calibration / parameter inference
Estimation of system parameters, with their uncertainties, 
given measured data

Parameter inference for non-linear stochastic models can 
become mathematically and computationally very challenging 
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The Bayesian framework

The Bayesian framework formalises learning as an update 
process of our knowledge in the light of new data

Thomas Bayes 
(1701 - 1761)

Knowledge (belief) is quantified in the form of probability 
distributions

Learning means conditioning these distributions to observed 
data (belief depends on the available information)

We always need prior knowledge in the form of a probability 
distribution for our unknowns (data and parameters)
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The Bayesian framework

f (y, θ) = f (y ∣ θ) ⋅ f (θ)

The Bayesian Prior

Observables (measured, e.g., monthly sunspots number)y = {y1, y2, . . . , yn}
θ = {θ1, θ2, . . . , θm} Parameters (to be inferred, e.g., dynamo number, diffusion 

timescale, time delay, noise amplitude)

Prior knowledge 
about parameters

Probability distribution for 
observables given parameters 

(our probabilistic model)

Joint probability 
distribution for 

observables and 
parameters
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The Bayesian framework

The Bayesian Prior

f (y ∣ θ) =
n

∏
i=1

1

2πσ
exp (−

(yi − μ)2

2σ2 )

Example: observables  are expected to be normally distributed around a mean 
value , with a spread defined by a variance  

y
μ σ2

θ = {μ, σ}y = {yi}i=1,...,nObservables: Parameters to be inferred: 

f (θ) = χ (μmin < μ < μmax) χ (σmin < σ < σmax)

f (y, θ) = f (y ∣ θ) ⋅ f (θ) Joint probability distribution for 
observables and parameters
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The Bayesian framework

The Bayesian posterior
We measure , which is believed to be a realisation of our model, , 
for a “true” set of parameters  

y(obs) f (y ∣ θ*)
θ*

Likelihood function: 
probability that model produces 
data  for given parameters y(obs) θ

Posterior distribution: 
probability of model parameters 
given measured data

f (θ ∣ y(obs)) ∝ f (y(obs), θ) = f (y(obs) ∣ θ) f (θ)

Bayes Equation
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The Bayesian framework

The Bayesian posterior
We measure , which is believed to be a realisation of our model, , 
for a “true” set of parameters  

y(obs) f (y ∣ θ*)
θ*

Bayesian inference: 
Drawing a sufficiently large parameter 
sample from the posterior f (θ ∣ y(obs))

probabilistic predictions

learn something about the system and the 
mechanisms that lead to observed features 
(with physically interpretable parameters)

f (θ ∣ y(obs)) ∝ f (y(obs), θ) = f (y(obs) ∣ θ) f (θ)
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SR in B-L Dynamos?

Numerical evidence for stochastic resonances in Babcock-Leighton dynamos
The quest for the holy grail

fn (pn) =
1
2 [1 + erf ( pn − Bmin(1 + aTn)

W1 )] [1 − erf ( pn − Bmax

W1 )]
T = {Tn}

Planetary tidal torque, 
with (small) amplitude a external periodic forcing

pn+1 = αfn (pn) pn + ϵn ϵn ∈ 𝒰 [0,ϵ] internal noise

Model: stochastic iterative map
(Charbonneau et al., Astrophys. J 658, 2007)

θ = {α, a, ϵ} Parameters to be inferred

Last but not least, we need data
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SR in B-L Dynamos?

Planetary torque

Years BP PS
D

Years

Power Spectral Density (PSD)

T

Abreu et al., A&A 548, 2012

Gleissberg De Vries150 y

ϕ

Years BP

Solar modulation potential

Years

PS
D

Power Spectral Density (PSD)(from 10Be and 14C records)

Gleissberg De Vries150 y
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SR in B-L Dynamos?

Planetary torque

Years BP PS
D

Years

Power Spectral Density (PSD)

T

Abreu et al., A&A 548, 2012

Gleissberg De Vries150 y

ϕ

Years BP

Solar modulation potential

Years

PS
D

Power Spectral Density (PSD)(from 10Be and 14C records)

Gleissberg De Vries150 y

We don’t know the 
likelihood function!

Data y(obs)

y(obs)
1

y(obs)
2

y(obs)
3
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Likelihood-free Bayesian inference

Approximate Bayesian Computation (ABC) methods 
bypass the evaluation of the likelihood function

All ABC-based methods approximate the likelihood function by 
simulations, the outcomes of which are compared with the observed data

f (y(obs) ∣ θ)

The simplest ABC rejection algorithm iterates the following steps:

1. Sample a parameter set  from the prior ̂θ = {α, a, ϵ} f (θ)
2. Simulate a data set  from the model  ŷ ℳ( ̂θ) pn+1 = αfn (pn) pn + ϵnModel :ℳ

3. The parameter set  is accepted with tolerance  if   ̂θ δ > 0

where the distance  quantifies the discrepancy between  and ρ ŷ y(obs)

according to a given metric (e.g., Euclidean distance)

ρ (ŷ, y(obs)) ≤ δ
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Likelihood-free Bayesian inference

The outcome of the ABC algorithm is a sample of parameter values 
approximately distributed according to the desired posterior distribution

…obtained without explicitly evaluating the likelihood function!

very inefficient!

Broad variety of more sophisticated ABC-based algorithm. We use 
Simulated Annealing ABC (SABC) Albert et al., Stat. Comput. 25, 2015

In a nutshell…

Great, but…
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SABC algorithm

Replace the distance  with the Boltzmann factorρ (ŷ, y(obs))

exp [−ρ (y, y(obs))/T]
distance measure 
(energy)

tolerance 
(temperature)

and gradually lower the temperature  during the execution of the algorithm 
(= reminiscent of annealing processes in metallurgy).

T

That way, an ensemble of “particles”  is evolved such that the 

observables  get more and more concentrated around , and the 

parameters  represent more and more the posterior 

{yj, θj}
yj y(obs)

θj f (θ ∣ y(obs))
Practically…
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SABC algorithm

Initialisation: sample an ensemble of particles  from the prior {yj, θj} f (y, θ)
Then, the basic SABC loop is:

1. Draw a random particle  from the ensemble(yj, θj)
2. Make a jump in parameter space θj → θ*j
3. Simulate a data set  from the model y*j ℳ(θ*j )

pn+1 = αfn (pn) pn + ϵnModel :ℳ
4. Accept the move with probability

min 1,
f(θ*j )
f(θj)

exp [−
ρ(y*j , y(obs)) − ρ(yj, y(obs))

T ]
5. Lower the temperature  a “little bit” (also adaptively, depending on 

the average distance of the ensemble from the target )
T

y(obs)

SABC is highly parallelisable, and scales linearly with the number of particles  
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Back to Stochastic Resonances

α

α

ϵ

pi

ABC posterior sample

Is this the fingerprint of a 
Stochastic Resonance?

Back to Stochastic Resonances

α

ϵ
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Pitfalls and remedies

Data set (= spectral amplitudes of 3 periods) is not very informative

Proxy data from radionuclides are affected by a variety of “non-solar” 
processes that are not considered in dynamo models 

The iterative map model is a brute approximation (loss of information)

Data: use sunspots number, the longest direct record of solar 
magnetic activity. Data available since 1749 with monthly resolution. 

Year

Model: use time-continuous time delay ODE model 
(Wilmot-Smith et al., Astrophys. J 652, 2006)



17

Time delay ODE model

··B(t) +
2
τ

·B(t) +
1
τ2

B(t) = αB(t − T )g(B(t − T ))

g(B) =
1
4 (1 + erf(B2 − B2

min)) (1 − erf(B2 − B2
max))

α =
ωα0

L
T = T0 + T1

ND = ατ2

B Is the sun close to a transition point? Which one?
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Stochastic time delay ODE model

We replace  with α α(t) = α[1 + η(t)] white noise with variance η(t) = σ2

We can write the likelihood: 

𝒮 =
n

∑
i=1

Δt
2N2

Dσ2g2(Bi) [τ2 Bi+1 − 2Bi + Bi−1

Δt2
+ 2τ

Bi − Bi−1

Δt
+ Bi + NDg(Bi)]

2

f (B(obs) ∣ θ) ∝ exp [−n log(σ) − 𝒮]
with the action  defined as:𝒮

and the parameters to be inferred, θ = {τ, ND, T, σ}

Moreover, 1 month (observations time step). No need to integrate 
system dynamics between consecutive observation points.

Δt =

We assume:   sunspots number ∝ B2
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EMCEE sampler: the MCMC hammer

Markov Chain Monte Carlo (MCMC) Ensemble sampler
(Goodman and Weare, Comm. App. Math. And Comp. Sci. 5, 2010)

MCMC generates a random walk in parameter space drawing a 
representative set of samples form the posterior distribution  f (θ ∣ y(obs))
1. Make a jump in parameter space  based on a proposal distributionθ → θ*

2. Accept the move with probability   min (1,
f(θ* ∣ B(obs))
f(θ ∣ B(obs)) ) Metropolis 

algorithm

EMCEE involves simultaneously propagating an ensemble of  walkers 
 where the proposal distribution for one walker  is based on the 

current position (in parameter space) of the other  walkers  

K
S = {Xk} k

K − 1

Very efficient, very few tuning parameters, well-suited for parallel computing
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EMCEE sampler: the MCMC hammer
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Moreover…

We need to integrate system dynamics between consecutive data points 

Radionuclides proxy data (much longer time scale) in combination with 
time-continuous ODE model

ϕ

Years BP

A new ace up our sleeve: Hamiltonian Monte Carlo (HMC) (with time-
scale separation)

Albert et al, PRE 93, 2016
Thinkshop 2020


