introduction
Find important work in your field of research
introduction
Be a member of the ScienceMedia Network
introduction
Upload your work and digital content
introduction
Share your videos in your work
Make your conference world-wide visible
Full conference: 299.00€ + VAT only!
Featured
Ambulance Of The Future: Smarter, More Comfortable, More Connected - Futuris
Engineering (Civil engineering)
Date of upload:
16.10.2015
Co-author:
Caption:
Every year all over Europe ambulances come to the aid of millions of people. "A study suggests almost half of the cases could be treated on the spot": http://www.smartambulanceproject.eu/wp-content/uploads/2015/02/Redesigning_the_Ambulance_Lo-Res.pdf and not need hospital care. Made by euronews, the most watched news channel in Europe.
Use Case IV: Inform and direct first responders and people at risk in case of an incident
Computer Sciences (Artificial intelligence)
Date of upload:
28.09.2015
Co-author:
Dieter Galwick (Oracle)
Caption:
Oracle First Responder Use Case Objective, a detailed description, responses to use case questionnaire (functionality, operational characteristics, implementation constrains)
Looking at Earth as a planet
Natural Sciences (Astrophysics and Astrononmy)
Date of upload:
25.05.2017
Co-author:
Caption:
Made by euronews, the most watched news channel in Europe. euronews knowledge brings you a fresh mix of the world's most interesting know-hows, directly from space and sci-tech experts.
EST Event in Rome
Natural Sciences (Astrophysics and Astrononmy)
Date of upload:
28.03.2018
Co-author:
Caption:
The first European presentation of EST took place on Thursday, October 5th, 2017, at 9:50am, at the prestigious location of the Accademia Nazionale dei Lincei (Pallazzina dell'Auditorio - Via della Lungara 230, Rome).
Quasi-periodic pulsations in stellar flares
Natural Sciences (Astrophysics and Astrononmy)
Date of upload:
10.09.2015
Co-author:
Chloe Pugh, Valery Nakariakov
Abstract:
Quasi-periodic pulsations (QPPs) are a common feature of solar flares that are observed in many different wavelengths. Although QPPs appear not to be as abundant in white light Kepler flare light curves as they are in solar flares, albeit in different wavelengths the structure of the pulsations are strikingly similar, hinting that the same underlying processes govern both solar and stellar flares. Here we consider a special case, observed on KIC9655129, which shows evidence of multiple periodicities. We speculate that the presence of multiple periodicities is a good indication that the QPPs were caused by magnetohydrodynamic oscillations, further strengthening the case that the physical processes in operation during stellar flares are at least analogous to those in solar flares.
Accurate numerical solutions to the forward problem of local helioseismology
Natural Sciences (Mathematics)
Date of upload:
14.07.2016
Co-author:
Michael Leguèbe, Damien Fournier, Aaron C. Birch, Laurent Gizon in Collaboration with Inria team Magique3D
Abstract:
We compute acoustic Green’s functions in an axisymmetric solar background model, which may include a meridional flow and differential rotation. The wave equation is solved in the frequency domain using a finite element solver. A transparent boundary condition for the waves is implemented in the chromosphere, which represents a great improvement in computational efficiency compared to implementations based on ’sponge layers’. We perform various convergence studies that demonstrate that wave travel times can be computed with an accuracy of 0.001 s. This high level of numerical accuracy is required to interpret travel times in the deep interior, and is achieved thanks to a refined mesh in the near surface layers and around the source of excitation. The wave solver presented here lays the ground for future iterative inversion methods for flows in the deep solar interior.
Observations of Red Giants with SONG
Natural Sciences (Astrophysics and Astrononmy)
Date of upload:
03.08.2016
Co-author:
Abstract:
One of the outstanding and unforeseen results from the Kepler mission is our new insight and understanding of red giant stars. These highly evolved stars, which are in the last stages of their life, provide extremely useful information when trying to develop stellar evolutionary models. Furthermore, they show stochastically excited oscillations thus allowing to use asteroseismic techniques to derive conditions of the most internal layers. Bright giants stars are well suited to be studied with the 1m telescopes in the Stellar Observations Network Group project (SONG) using a high resolution echelle spectrograph performing high precision measurements of their the radial velocity. The prototype node- the Hertzsprung SONG telescope- was inaugurated in October 2014 and is located at the Teide Observatory on Tenerife and providing continuous and high quality observations since then, When selecting the best targets for SONG, a precision of 1-2 m/s per point is reachable using the iodine method and a number of red giants have been observed with the SONG telescope since scientific operation started. In this talk we present the first results of these specific campaigns for a few red giants in which eigenmodes have been identified and their global seismic parameters derived.
Comparison of damping mechanisms for transverse waves in coronal loops.
Natural Sciences (Astrophysics and Astrononmy)
Date of upload:
22.01.2017
Co-author:
I. Arregui
Abstract:
Damping of transverse waves in different solar coronal structures is a commonly observed property and a source of information about coronal conditions. Although resonant damping seems to be the most accepted mechanism for damping of transverse waves, there are other possible mechanisms. We have carried out a Bayesian analysis comparing three different models which could explain the damping in coronal loops. Our results indicate that resonant absorption is the most probable mechanism for low ratios between damping time and wave period, while the wave leakage mechanism is the best candidate for high ratios. Nonetheless, the evidence for one model against another shows a strong dependence on the data errors.
Gas towards the Gamma­-ray-­Emitting Supernova Remnant W28 (and others)
Natural Sciences (Astrophysics and Astrononmy)
Date of upload:
21.12.2015
Co-author:
Gavin Rowell, Matthieu Renaud, Phoebe de Wilt, Fabien Voisin, Yasuo Fukui, Michael Burton, Andrew Walsh, Akiko Kawamura, Andrew Walsh, Akiko Kawamura, Felix Aharonian
Abstract:
We present the results of molecular spectral line observations towards Supernova Remnants such as W28, RX J1713.7-3946 and HESS J1731-347. These remnants exhibit TeV gamma-ray emission, beacons for the presence of enhanced populations of high energy particles. It follows that these objects may accelerate Galactic cosmic-ray protons via the diffusive shock mechanism, but knowledge of the environment local to such remnants is required to constrain such scenarios. The Mopra radio telescope is ideal for probing the interstellar environments of HESS gamma-ray sources through large-scale molecular line surveys. Mopra can be employed to hunt for dense gas-tracing CS and NH3 transitions to identify potential cosmic-ray target material, while simultaneously searching for shock-tracing SiO emission lines which can directly highlight shock-disrupted gas. Furthermore, spectral line width gives an insight into gas dynamics and Mopra is capable of measuring this at a ~1' resolution over degree-scale regions. We present results from recent 7 and 12mm surveys towards the above-mentioned TeV-emitting Supernova Remnants and discuss the implications for distance, the diffusion of cosmic-rays and the high energy gamma-ray spectrum.
Survival and activity of bacteria in air: Why do we care?
Natural Sciences (Biology)
Date of upload:
25.04.2016
Co-author:
Kai Finster, Meilee Ling, Maher Sahyoun, Morten Dreyer, Stine Holm, Martin Rasmussen, Stephanie Pilgaard
Abstract:
The presentation deals with activity of airborne microbial cells and how this is important for expanding our understanding of habitability and biosignatures.
Field line helicity as a tool for coronal physics
Natural Sciences (Physics)
Date of upload:
22.11.2017
Co-author:
G. Hornig, M.H. Page
Abstract:
What if there were a way to identify **where** the magnetic helicity is concentrated within a three- dimensional magnetic field? At first sight this question appears meaningless, since magnetic helicity is an integral over the whole volume of the magnetic field. But, in fact, it is possible to decompose this total helicity as an integral over individual "field line helicities" for each magnetic field line in the domain. All of these are ideal-invariant, topological quantities, and they allow us to quantify in a meaningful way how magnetic helicity is distributed within the domain. In this talk, I will show how this idea can be practically applied to typical extrapolations of the Sun's coronal magnetic field that are used in solar physics.
Development of instrumentation for solar observations at the Brazilian National Institute for Space
Natural Sciences (Physics)
Date of upload:
15.11.2018
Co-author:
Abstract:
The solar electromagnetic and corpuscular emissions are strongly modulated by the evolution of the magnetic structure of the solar atmosphere, which is imprinted in the solar surface. The evolution of the magnetic structure leads to gradual changes in the solar activity (space climate) as well as violent events (space weather) that affect the whole Heliosphere. In particular, the solar output affects the ionized and neutral components of the Earth’s atmosphere that have a direct impact on human activities from agriculture to high-technological systems. The solar magnetism is driven by the energy transport from the inner layers to the solar atmosphere. Although systematic observations have revealed several features related to the evolution of solar activity, there is not a complete explanation of the physical processes that lead to solar activity cyclic variability and its long-term changes. Here we present a brief description of the development of a magnetograph and visible-light imager instrument to study the solar dynamo processes through observations of the solar surface magnetic field distribution. The instrument will provide measurements of the vector magnetic field and the line-of-sight velocity in the solar photosphere. As the magnetic field anchored at the solar surface produces most of the structures and energetic events in the upper solar atmosphere and significantly influences the Heliosphere, the development of this instrument plays an essential role in reaching the scientific goals of The Atmospheric and Space Science Coordination (CEA) at the Brazilian National Institute for Space Research (INPE). In particular, the INPE’s Space Weather program will benefit most from the development of this technology. Additionally, we expect that this project will be the starting point to establish a robust research program on Solar System Research at INPE. The proposed instrument has been designed to operate on the ground, but with a conceptual design flexible enough to be adapted to work on a balloon and space-based platforms. In this way, our main aim is acquiring know-how progressively to build state-of-art solar vector magnetograph and visible-light imagers for space-based platforms to contribute to the efforts of the solar-terrestrial physics community to address the main unanswered questions on how our nearby Star works.
Observational evidence for variations of the acoustic cutoff frequency with height in the solar atmosphere
Natural Sciences (Astrophysics and Astrononmy)
Date of upload:
10.03.2016
Co-author:
Z.E.Musielak, J.Staiger, M.Roth
Abstract:
Direct evidence for the existence of an acoustic cuto frequency in the solar atmosphere is given by observations performed by using the HELioseismological Large Regions Interferometric DEvice operating on the Vacuum Tower Telescope located on Tenerife. The observational results demonstrate variations of the cuto with atmospheric heights. The observed variations of the cuto are compared to theoretical predictions made by using ve acoustic cuto frequencies that have been commonly used in helioseismology and asteroseismology. The comparison shows that none of the theoretical predictions is fully consistent with the observational data. The implication of this nding is far reaching as it urgently requires either major revisions of the existing methods of nding acoustic cuto frequencies or developing new methods that would account much better account for the physical picture underlying the concept of cuto frequencies in inhomogeneous media.
Study of the Energy of Consciousness Healing Treatment on Physical, Structural, Thermal, and Behavioral Properties of Zinc Chloride
Natural Sciences (Analytical Chemistry, Method Development (Chemistr)
Date of upload:
06.07.2017
Co-author:
Mahendra Kumar Trivedi, Alice Branton, Dahryn Trivedi, Alan Joseph Balmer, Dimitrius Anagnos, Janice Patricia Kinney, Joni Marie Holling, Joy Angevin Balmer, Lauree Ann Duprey-Reed, Vaibhav Rajan Parulkar, Parthasarathi Panda, Kalyan Kumar Sethi, Snehasis Jana
Abstract:
Zinc chloride is an important pharmaceutical/nutraceutical mineral for the prevention and treatment of several diseases. The objective of the current study was to investigate the impact of The Trivedi Effect®-Energy of Consciousness Healing Treatment (Biofield Energy Treatment) on physical, structural, thermal, and behavioral properties of zinc chloride using PXRD, PSD, FT-IR, UV-vis, and DSC analysis. Zinc chloride was divided into two parts – one part was control, while another part was treated with The Trivedi Effect® remotely by seven renowned Biofield Energy Healers and defined as The Trivedi Effect® treated sample. A significant alteration of the crystallite size and relative intensities of the PXRD peaks were observed in The Trivedi Effect® treated sample with respect to the control sample. A sharp peak at 2θ equal to 51.45°, which was observed in the control sample was disappeared in the treated sample. The average crystallite size of the treated sample was decreased by 2.13% compared with the control sample. The size of the particles at d10, d50, and d90 was decreased by 3.36%, 7.97%, and 11.51%, respectively in the treated sample compared with the control sample. The surface area of the treated sample was significantly increased by 5.69% compared with the control sample. The FT-IR spectroscopic analysis revealed that Zn-Cl stretching in the control was 646 cm-1, whereas it was significantly shifted downward to 505 cm-1in the treated sample. The UV-vis analysis exhibited that wavelength of the maximum absorbance (λmax) of both the control and treated samples was at 196.4 nm. The DSC analysis exhibited that the melting and decomposition temperature were increased by 0.93% and 0.56%, respectively in the treated zinc chloride compared to the control sample. The enthalpy of fusion of the treated sample (338.27 J/g) was increased significantly by 33.84% compared with the control sample (252.75 J/g). The enthalpy of decomposition of the treated sample was increased by 3.78% compared with the control sample. The current study anticipated that The Trivedi Effect®-Energy of Consciousness Healing Treatment might lead to produce a new polymorphic form of zinc chloride, which would be more soluble, bioavailable, and thermally stable compared with the untreated compound. The treated sample could be more stable during manufacturing, delivery or storage conditions than the untreated sample. Hence, the treated zinc chloride would be very useful to design better nutraceutical/pharmaceutical formulations that might offer better therapeutic response against inflammatory diseases, immunological disorders, aging, stress, cancer, etc.
Consciousness Energy Healing Treatment Based Herbomineral Formulation: A Safe and Effective Approach for Skin Health
Natural Sciences ()
Date of upload:
08.07.2017
Co-author:
Jagdish Singh, Mahendra Kumar Trivedi, Alice Branton, Gopal Nayak, Mayank Gangwar, Snehasis Jana
Abstract:
Oxidative stress causes serious skin damage that is characterized by ageing, wrinkling, roughness, laxity and pigmentation. In the present work, the impact of Biofield Energy (The Trivedi Effect®-Consciousness Energy Healing) Treatment on the herbomineral test formulation and cell medium (DMEM) was evaluated for skin health parameters. The test formulation was consisted of minerals (zinc chloride, sodium selenate, and sodium molybdate), L-ascorbic acid, herbal (Centella asiatica) extract, and tetrahydrocurcumin (THC). The test formulation and DMEM media were divided into two parts. One part received the Biofield Energy Treatment by Jagdish Singh and was termed as the Biofield Treated (BT) sample, while other was denoted as the untreated (UT) samples. MTT assay showed that test formulation was found safe and nontoxic with greater than 75% cell viability against various tested concentrations. Cell proliferation data using BrdU method showed an improved cell proliferation by 149.13% and 118.80% at 8.75 µg/mL in the UT-DMEM + BT-Test formulation and BT-DMEM + UT-Test formulation groups, respectively compared with the untreated group. The collagen level was significantly increased by 28.14% and 44.45% at 1.25 and 0.625 µg/mL, respectively in the UT-DMEM + BT-Test formulation compared with the untreated group. The elastin level was increased by 10.38%, 14.66%, and 48.24% at 2.5, 1.25, and 0.625 µg/mL, respectively in the BT-DMEM + UT-Test formulation group, compared with the untreated group. Moreover, melanin synthesis was significantly inhibited by 5.93%, 1.43%, and 1.43% in the UT-DMEM + BT-Test formulation, BT-DMEM + UT-Test formulation, and BT-DMEM + BT-Test formulation groups, respectively at 0.0625 µg/mL compared with the untreated group. However, melanin synthesis was decreased by 11.71% and 15.75% at 0.125 µg/mL in the UT-DMEM + BT-Test formulation and BT-DMEM + UT-Test formulation groups, respectively. Anti-wrinkling effects exhibited improved cell viability by 17.19% and 28.68% at 2.5 µg/mL in the UT-DMEM + BT-Test formulation and BT-DMEM + BT-Test formulation groups, respectively in HFF-1 cells compared with the untreated group. Wound healing activity using scratch assay showed a significantly improved healing rate upto 5% in the HFF-1 and HaCaT cells lines in the Biofield Energy Healing based test formulation. Overall, the data suggests that The Trivedi Effect® treated test formulation and DMEM has the capacity to improve the skin health and suggests its use in psoriasis, seborrheic dermatitis, skin cancer, rashes from bacterial or fungal infections, and many more skin diseases.
Biofield Energy Healing Based Herbomineral Formulation: An Emerging Frontier in Cosmetic Medicine
Natural Sciences ()
Date of upload:
14.07.2017
Co-author:
Dezi Ann Koster, Mahendra Kumar Trivedi, Alice Branton, Gopal Nayak, Mayank Gangwar, Snehasis Jana
Abstract:
The application of the herbomineral formulations in general skin health are increasing day-by-day due to the excellent outcomes without any adverse effects. This study was designed to evaluate the influence of The Trivedi Effect®-Consciousness Energy Healing Treatment on an herbomineral formulation and cell medium against various skin health parameters. The test formulation consists of minerals (zinc chloride, sodium selenate, and sodium molybdate) and L-ascorbic acid along with herbal extracts, Centella asiatica, and tetrahydrocurcumin (THC). The test formulation and DMEM media were divided into two equal parts, one was treated with a Biofield Treatment (BT) by Dezi Ann Koster and denoted as treated, while the other part was coded as the untreated (UT) groups. MTT assay results showed that test formulation was safe and nontoxic with more than 89% cell viability in the tested cell lines. BrdU assay showed an improved cell proliferation by 2.82% in the UT-DMEM + BT-Test formulation group compared with the untreated group. The level of collagen was significantly increased by 32.42%, 33.64%, and 29.13% at 2.5, 1.25 and 0.625 µg/mL, respectively in the UT-DMEM + BT-Test formulation, while34.17%, 26.73%, and 17.56% increased at 2.5, 1.25 and 0.625 µg/mL, respectively in BT-DMEM + BT-Test formulation group compared with the untreated group. Elastin level was increased by 408.6% at concentration of 0.625 µg/mL in UT-DMEM + BT-Test formulation group compared with untreated group. However, hyaluronic acid (HA) level was increased by 31.88%, 15.52%, and 58.29% at 2.5, 1.25, and 0.625 µg/mL, respectively in the BT-DMEM + BT-Test formulation group compared with untreated group. Besides, melanin synthesis was significantly inhibited by 16.09% and 18.93% in the UT-DMEM + BT-Test formulation and BT-DMEM + UT-Test formulation groups, respectively at 0.125 µg/mL compared with the untreated group. Anti-wrinkling activity in HFF-1 cells showed an improved cell viability by 5.49% and 11.26% at 1.25 and 0.625 µg/mL, respectively in BT-DMEM + BT-Test formulation group compared with the untreated group. Wound healing scratch assay results showed a significant healing rate by 5% and 10% in HFF-1 and HaCaT cells lines, respectively with high cellular migration of fibroblast and keratinocytes. Overall, it can be concluded that the Biofield Energy Healing (The Trivedi Effect®) based test formulation and cell medium could be helpful against various skin disorders and can be used in psoriasis, seborrheic dermatitis, skin cancer, rashes from bacterial or fungal infections as anti-wrinkling, skin-whitening, anti-ageing, and rejuvenating agent.
Seismology of the Sun and the Distant Stars 2016
Natural Sciences (Astrophysics and Astrononmy)
Start date:
10.07.2016
End date:
14.07.2016
Location:
Angra do Heroísmo, Terceira-Açores, Portugal
Towards a Multimodal Construction Grammar
Humanities (Linguistics)
Start date:
09.03.2016
End date:
11.03.2016
Location:
Osnabrück, Germany
The Physics of the Sun from the Interior to the Outer Atmosphere
Natural Sciences (Astrophysics and Astrononmy)
Start date:
14.01.2017
End date:
19.01.2017
Location:
Arrecife, Lanzarote, Spain
Helicity Thinkshop 3
Natural Sciences (Astrophysics and Astrononmy)
Start date:
19.11.2017
End date:
24.11.2017
Location:
Tokyo (Japan)
Some of our users