introduction
Find important work in your field of research
introduction
Be a member of the ScienceMedia Network
introduction
Upload your work and digital content
introduction
Share your videos in your work
Make your conference world-wide visible
Full conference: 299.00€ + VAT only!
Featured
Angles of repose observed in heap (de-)construction
Natural Sciences (Physics)
Date of upload:
14.04.2015
Co-author:
T. Kraft, H. Riedel, M. Moseler
Caption:
In a Discrete Element Method (DEM) simulation angles of repose are analyzed which reveal static properties of a granular material. The theoretical maximum angle is related to the internal angle of friction of the material, $\phi = \arctan(T/N)$, where $T$ is the maximum shear force the powder bulk can withstand when applying a normal force $N$. Two angles of repose, namely the outflow angle $\theta_{\text{O}}$ obtained by heap decomposition through slow outflow and the heap angle $\theta_{\text{H}}$ obtained by heap composition via pouring grains on top of a newly forming heap are measured. The simulation was carried out using SimPARTIX.
euronews futuris - The Cloudbusters
Natural Sciences (Earth sciences)
Date of upload:
01.09.2015
Co-author:
Caption:
A 200 metre tower is one of the tools being used to crack one of the trickiest problems in climate science - clouds.
Europe's future in space
Natural Sciences (Astrophysics and Astrononmy)
Date of upload:
17.02.2017
Co-author:
Caption:
Made by euronews, the most watched news channel in Europe. euronews knowledge brings you a fresh mix of the world's most interesting know-hows, directly from space and sci-tech experts.
Quasi-periodic pulsations in stellar flares
Natural Sciences (Astrophysics and Astrononmy)
Date of upload:
10.09.2015
Co-author:
Chloe Pugh, Valery Nakariakov
Abstract:
Quasi-periodic pulsations (QPPs) are a common feature of solar flares that are observed in many different wavelengths. Although QPPs appear not to be as abundant in white light Kepler flare light curves as they are in solar flares, albeit in different wavelengths the structure of the pulsations are strikingly similar, hinting that the same underlying processes govern both solar and stellar flares. Here we consider a special case, observed on KIC9655129, which shows evidence of multiple periodicities. We speculate that the presence of multiple periodicities is a good indication that the QPPs were caused by magnetohydrodynamic oscillations, further strengthening the case that the physical processes in operation during stellar flares are at least analogous to those in solar flares.
Accurate numerical solutions to the forward problem of local helioseismology
Natural Sciences (Mathematics)
Date of upload:
14.07.2016
Co-author:
Michael Leguèbe, Damien Fournier, Aaron C. Birch, Laurent Gizon in Collaboration with Inria team Magique3D
Abstract:
We compute acoustic Green’s functions in an axisymmetric solar background model, which may include a meridional flow and differential rotation. The wave equation is solved in the frequency domain using a finite element solver. A transparent boundary condition for the waves is implemented in the chromosphere, which represents a great improvement in computational efficiency compared to implementations based on ’sponge layers’. We perform various convergence studies that demonstrate that wave travel times can be computed with an accuracy of 0.001 s. This high level of numerical accuracy is required to interpret travel times in the deep interior, and is achieved thanks to a refined mesh in the near surface layers and around the source of excitation. The wave solver presented here lays the ground for future iterative inversion methods for flows in the deep solar interior.
Observations of Red Giants with SONG
Natural Sciences (Astrophysics and Astrononmy)
Date of upload:
03.08.2016
Co-author:
Abstract:
One of the outstanding and unforeseen results from the Kepler mission is our new insight and understanding of red giant stars. These highly evolved stars, which are in the last stages of their life, provide extremely useful information when trying to develop stellar evolutionary models. Furthermore, they show stochastically excited oscillations thus allowing to use asteroseismic techniques to derive conditions of the most internal layers. Bright giants stars are well suited to be studied with the 1m telescopes in the Stellar Observations Network Group project (SONG) using a high resolution echelle spectrograph performing high precision measurements of their the radial velocity. The prototype node- the Hertzsprung SONG telescope- was inaugurated in October 2014 and is located at the Teide Observatory on Tenerife and providing continuous and high quality observations since then, When selecting the best targets for SONG, a precision of 1-2 m/s per point is reachable using the iodine method and a number of red giants have been observed with the SONG telescope since scientific operation started. In this talk we present the first results of these specific campaigns for a few red giants in which eigenmodes have been identified and their global seismic parameters derived.
Comparison of damping mechanisms for transverse waves in coronal loops.
Natural Sciences (Astrophysics and Astrononmy)
Date of upload:
22.01.2017
Co-author:
I. Arregui
Abstract:
Damping of transverse waves in different solar coronal structures is a commonly observed property and a source of information about coronal conditions. Although resonant damping seems to be the most accepted mechanism for damping of transverse waves, there are other possible mechanisms. We have carried out a Bayesian analysis comparing three different models which could explain the damping in coronal loops. Our results indicate that resonant absorption is the most probable mechanism for low ratios between damping time and wave period, while the wave leakage mechanism is the best candidate for high ratios. Nonetheless, the evidence for one model against another shows a strong dependence on the data errors.
Gas towards the Gamma­-ray-­Emitting Supernova Remnant W28 (and others)
Natural Sciences (Astrophysics and Astrononmy)
Date of upload:
21.12.2015
Co-author:
Gavin Rowell, Matthieu Renaud, Phoebe de Wilt, Fabien Voisin, Yasuo Fukui, Michael Burton, Andrew Walsh, Akiko Kawamura, Andrew Walsh, Akiko Kawamura, Felix Aharonian
Abstract:
We present the results of molecular spectral line observations towards Supernova Remnants such as W28, RX J1713.7-3946 and HESS J1731-347. These remnants exhibit TeV gamma-ray emission, beacons for the presence of enhanced populations of high energy particles. It follows that these objects may accelerate Galactic cosmic-ray protons via the diffusive shock mechanism, but knowledge of the environment local to such remnants is required to constrain such scenarios. The Mopra radio telescope is ideal for probing the interstellar environments of HESS gamma-ray sources through large-scale molecular line surveys. Mopra can be employed to hunt for dense gas-tracing CS and NH3 transitions to identify potential cosmic-ray target material, while simultaneously searching for shock-tracing SiO emission lines which can directly highlight shock-disrupted gas. Furthermore, spectral line width gives an insight into gas dynamics and Mopra is capable of measuring this at a ~1' resolution over degree-scale regions. We present results from recent 7 and 12mm surveys towards the above-mentioned TeV-emitting Supernova Remnants and discuss the implications for distance, the diffusion of cosmic-rays and the high energy gamma-ray spectrum.
Survival and activity of bacteria in air: Why do we care?
Natural Sciences (Biology)
Date of upload:
25.04.2016
Co-author:
Kai Finster, Meilee Ling, Maher Sahyoun, Morten Dreyer, Stine Holm, Martin Rasmussen, Stephanie Pilgaard
Abstract:
The presentation deals with activity of airborne microbial cells and how this is important for expanding our understanding of habitability and biosignatures.
Field line helicity as a tool for coronal physics
Natural Sciences (Physics)
Date of upload:
22.11.2017
Co-author:
G. Hornig, M.H. Page
Abstract:
What if there were a way to identify **where** the magnetic helicity is concentrated within a three- dimensional magnetic field? At first sight this question appears meaningless, since magnetic helicity is an integral over the whole volume of the magnetic field. But, in fact, it is possible to decompose this total helicity as an integral over individual "field line helicities" for each magnetic field line in the domain. All of these are ideal-invariant, topological quantities, and they allow us to quantify in a meaningful way how magnetic helicity is distributed within the domain. In this talk, I will show how this idea can be practically applied to typical extrapolations of the Sun's coronal magnetic field that are used in solar physics.
Development of instrumentation for solar observations at the Brazilian National Institute for Space
Natural Sciences (Physics)
Date of upload:
15.11.2018
Co-author:
Abstract:
The solar electromagnetic and corpuscular emissions are strongly modulated by the evolution of the magnetic structure of the solar atmosphere, which is imprinted in the solar surface. The evolution of the magnetic structure leads to gradual changes in the solar activity (space climate) as well as violent events (space weather) that affect the whole Heliosphere. In particular, the solar output affects the ionized and neutral components of the Earth’s atmosphere that have a direct impact on human activities from agriculture to high-technological systems. The solar magnetism is driven by the energy transport from the inner layers to the solar atmosphere. Although systematic observations have revealed several features related to the evolution of solar activity, there is not a complete explanation of the physical processes that lead to solar activity cyclic variability and its long-term changes. Here we present a brief description of the development of a magnetograph and visible-light imager instrument to study the solar dynamo processes through observations of the solar surface magnetic field distribution. The instrument will provide measurements of the vector magnetic field and the line-of-sight velocity in the solar photosphere. As the magnetic field anchored at the solar surface produces most of the structures and energetic events in the upper solar atmosphere and significantly influences the Heliosphere, the development of this instrument plays an essential role in reaching the scientific goals of The Atmospheric and Space Science Coordination (CEA) at the Brazilian National Institute for Space Research (INPE). In particular, the INPE’s Space Weather program will benefit most from the development of this technology. Additionally, we expect that this project will be the starting point to establish a robust research program on Solar System Research at INPE. The proposed instrument has been designed to operate on the ground, but with a conceptual design flexible enough to be adapted to work on a balloon and space-based platforms. In this way, our main aim is acquiring know-how progressively to build state-of-art solar vector magnetograph and visible-light imagers for space-based platforms to contribute to the efforts of the solar-terrestrial physics community to address the main unanswered questions on how our nearby Star works.
Impact of Biofield Energy Treatment on Soil Fertility
Natural Sciences ()
Date of upload:
03.09.2016
Co-author:
Alice Branton, Dahryn Trivedi, Gopal Nayak, Sambhu Charan Mondal, Snehasis Jana
Abstract:
Measurement of soil components such as microbial population, minerals and obviously the content of organic carbon play the important roles for the productivity of crops and plants. The present study was attempted to evaluate the impact of Mr. Trivedi’s biofield energy treatment on soil for its physical (electrical conductivity), chemical (minerals) and microbial flora (bacteria and fungi). A plot of lands was assigned for this study with some already grown plants. This plot was divided into two parts. One part was considered as control, while another part was subjected to Mr. Trivedi’s biofield energy treatment without physically touching and referred as treated. In the treated soil the total bacterial and fungal counts were increased by 546 and 617%, respectively as compared to the untreated soil. Additionally, the conductivity of soil of the treated plot was increased by 79% as compared to the soil of control plot. Apart from microbes, the content of various minerals were also changed in the biofield energy treated soil. The calcium carbonate content showed 2909 ppm in the control, while in the treated soil it was increased to 3943 ppm i.e. 36% increased. Various other minerals such as nitrogen and potassium were increased by 12% and 7%, respectively as compared to the control. Besides, the level of some minerals such as potassium, iron, and chloride were decreased by 9%, 23%, and 41%, respectively as compared to the control. Apart from chemical constituents of soil, the content of organic carbon was also reduced by 8% in the treated soil as compared to the control soil. The overall results envisaged that the biofield energy treatment on the soil showed a significant improvement in the physical, chemical, and microbial functions of soil component. Thus, improved the conductance, supportive microbes, minerals and overall productivity of crops. In conclusion, the biofield energy treatment could be used as an alternative way to increase the yield of quality crops by increasing soil fertility.
An Impact of the Trivedi Effect®-Biofield Energy Healing Based Herbomineral Formulation on Pro-inflammatory Cytokines Expression in Mouse Splenocytes
Natural Sciences ()
Date of upload:
17.12.2016
Co-author:
Alice Branton, Dahryn Trivedi, Gopal Nayak, Ariadne Esmene Afaganis, Barbara Marie Bader, Brian A. Weekes, Daphne Luisa Dumas, Denise Marie Fiedler, Dennille Mellesia Smith, Desi Pano, Donna Felice Galla, Donna Maria Alija, Elaine Barbara Mullins, Elaine M. Scorza, Ellia O'Donnell, Fabio Massimo Paciucci, Frances Goodman Warlick, Haddon Norman Salt, Inthirani Arul, Jacqueline Y. Andrews, James Jay McLeran, James Stephen Burnett, Jean Caroline White, Mayank Gangwar, Snehasis Jana
Abstract:
Due to the increased popularity of herbomineral preparations in the healthcare sector, a new proprietary herbomineral formulation was formulated consisting of ashwagandha root extract and three minerals viz. zinc chloride, magnesium gluconate, and sodium selenate. The objective of the study was to evaluate the in vitro effect of Biofield Energy Healing (The Trivedi Effect®) on the test formulation using murine splenocyte cells. The herbomineral formulation was divided into two parts; one defined as the control, while the other part was treated with the Biofield Energy Healing Treatment performed from a remote distance by twenty renowned Biofield Energy Healers (The Trivedi Effect®) and defined as the Biofield Treated formulation. The splenocyte cells were exposed to test formulations at concentration from 0.00001053 to 10.53 µg/mL and were analyzed after 48 hours for cell viability using MTT assay. The expression of the cytokines (TNF-α, IFN-γ, IL-1β, and MIP-1α) was determined using ELISA assay. The cell viability data showed that all the tested concentration ranges were found to be safe with percentage cell viability at more than 80%. Further, TNF-α expression was significantly inhibited in the Biofield Treated test formulation group with respect to the vehicle control, while at 0.001053 and 0.1053 µg/mL, the expression was suppressed by 1.70% and 8.16%, respectively in the Biofield Treated test formulation compared to the untreated formulation. However, a significant immunosuppression was reported in IFN-γ expression at 0.00001053, 0.0001053, 0.01053, 0.1053, and 1.053 µg/mL by 12.63%, 2.31%, 8.31%, 9.15%, and 7.86%, respectively in the Biofield Treated test formulation compared with the untreated test formulation. The MIP-1α expression was inhibited by 8.31%, 21.53%, and 8.70% at 0.0001053, 0.01053, and 0.1053 µg/mL, respectively in the Biofield Treated formulation compared with the untreated test formulation. However, IL-1β expression was significantly suppressed by 19.72% at concentration 0.00001053 µg/mL in the Biofield Treated test formulation compared with the untreated test formulation. Thus, the down-regulation of tested cytokines and chemokines in the Biofield Energy Healing test formulation might be applicable for controlling acute and chronic inflammation in many clinical diseases. Overall, the results demonstrated that The Trivedi Effect®- Biofield Energy Healing (TEBEH) has the capacity to potentiate the immunomodulatory activity of the test formulation, which can be useful against autoimmune disorders. Biofield Treated Test formulation may also be useful in anti-aging, anti-inflammatory, stress management and in preventing immune-mediated tissue damage in organ transplants by improving overall health and quality of life.
Modulation of Pro-inflammatory Cytokines Expression of the Biofield Energy (The Trivedi Effect®) Based Herbomineral Formulation in Mouse Splenocytes
Natural Sciences ()
Date of upload:
22.03.2017
Co-author:
Mahendra Kumar Trivedi, Alice Branton, Dahryn Trivedi, Gopal Nayak, William Dean Plikerd, Peter L. Surguy, Robert John Kock, Rolando Baptista Piedad, Russell Phillip Callas, Sakina A. Ansari, Sandra Lee Barrett, Sara Friedman, Steven Lee Christie, Susan Elizabeth Starling, Susan Jones, Susan Mardis Allen, Susanne Kathrin Wasmus, Terry Ann Benczik, Thomas Charles Slade, Thomas Orban, Victoria L. Vannes, Victoria Margot Schlosser, Yusif Sarkis Yamin Albino, Sambhu Charan Mondal, Snehasis Jana
Abstract:
With the increasing popularity of herbomineral preparations in healthcare, a new proprietary herbomineral formulation was formulated with ashwagandha root extract and three minerals viz. zinc, magnesium, and selenium. The aim of the study was to evaluate the immunomodulatory potential of Biofield Energy Healing (The Trivedi Effect®) on the herbomineral formulation using murine splenocyte cells. The test formulation was divided into two parts. One was the control without the Biofield Energy Treatment. The other part was labelled the Biofield Energy Treated sample, which received the Biofield Energy Healing Treatment remotely by twenty renowned Biofield Energy Healers. Through MTT assay, all the test formulation concentrations from 0.00001053 to 10.53 µg/mL were found to be safe with cell viability ranging from 102.61% to 194.57% using splenocyte cells. The Biofield Treated test formulation showed a significant (p≤0.01) inhibition of TNF-α expression by 15.87%, 20.64%, 18.65%, and 20.34% at 0.00001053, 0.0001053, 0.01053, and 0.1053, µg/mL, respectively as compared to the vehicle control (VC) group. The level of TNF-α was reduced by 8.73%, 19.54%, and 14.19% at 0.001053, 0.01053, and 0.1053 µg/mL, respectively in the Biofield Treated test formulation compared to the untreated test formulation. The expression of IL-1β reduced by 22.08%, 23.69%, 23.00%, 16.33%, 25.76%, 16.10%, and 23.69% at 0.00001053, 0.0001053, 0.001053, 0.01053, 0.1053, 1.053 and 10.53 µg/mL, respectively compared to the VC. Additionally, the expression of MIP-1α significantly (p≤0.001) reduced by 13.35%, 22.96%, 25.11%, 22.71%, and 21.83% at 0.00001053, 0.0001053, 0.01053, 1.053, and 10.53 µg/mL, respectively in the Biofield Treated test formulation compared to the VC. The Biofield Treated test formulation significantly down-regulated the MIP-1α expression by 10.75%, 9.53%, 9.57%, and 10.87% at 0.00001053, 0.01053, 0.1053 and 1.053 µg/mL, respectively compared to the untreated test formulation. The results showed the IFN-γ expression was also significantly (p≤0.001) reduced by 39.16%, 40.34%, 27.57%, 26.06%, 42.53%, and 48.91% at 0.0001053, 0.001053, 0.01053, 0.1053, 1.053, and 10.53 µg/mL, respectively in the Biofield Treated test formulation compared to the VC. The Biofield Treated test formulation showed better suppression of IFN-γ expression by 15.46%, 13.78%, 17.14%, and 13.11% at concentrations 0.001053, 0.01053, 0.1053, and 10.53 µg/mL, respectively compared to the untreated test formulation. Overall, the results demonstrated that The Trivedi Effect®- Biofield Energy Healing (TEBEH) has the capacity to potentiate the immunomodulatory and anti-inflammatory activity of the test formulation. Biofield Energy may also be useful in organ transplants, anti-aging, and stress management by improving overall health and quality of life.
Biofield Energy Healing Based Herbomineral Formulation: An Emerging Frontier in Cosmetic Medicine
Natural Sciences (Analytical Chemistry, Method Development (Chemistr)
Date of upload:
20.07.2017
Co-author:
Dezi Ann Koster, Mahendra Kumar Trivedi, Alice Branton, Dahryn Trivedi, Mayank Gangwar, Snehasis Jana
Abstract:
The application of the herbomineral formulations in general skin health are increasing day-by-day due to the excellent outcomes without any adverse effects. This study was designed to evaluate the influence of The Trivedi Effect®-Consciousness Energy Healing Treatment on an herbomineral formulation and cell medium against various skin health parameters. The test formulation consists of minerals (zinc chloride, sodium selenate, and sodium molybdate) and L-ascorbic acid along with herbal extracts, Centella asiatica, and tetrahydrocurcumin (THC). The test formulation and DMEM media were divided into two equal parts, one was treated with a Biofield Treatment (BT) by Dezi Ann Koster and denoted as treated, while the other part was coded as the untreated (UT) groups. MTT assay results showed that test formulation was safe and nontoxic with more than 89% cell viability in the tested cell lines. BrdU assay showed an improved cell proliferation by 2.82% in the UT-DMEM + BT-Test formulation group compared with the untreated group. The level of collagen was significantly increased by 32.42%, 33.64%, and 29.13% at 2.5, 1.25 and 0.625 µg/mL, respectively in the UT-DMEM + BT-Test formulation, while34.17%, 26.73%, and 17.56% increased at 2.5, 1.25 and 0.625 µg/mL, respectively in BT-DMEM + BT-Test formulation group compared with the untreated group. Elastin level was increased by 408.6% at concentration of 0.625 µg/mL in UT-DMEM + BT-Test formulation group compared with untreated group. However, hyaluronic acid (HA) level was increased by 31.88%, 15.52%, and 58.29% at 2.5, 1.25, and 0.625 µg/mL, respectively in the BT-DMEM + BT-Test formulation group compared with untreated group. Besides, melanin synthesis was significantly inhibited by 16.09% and 18.93% in the UT-DMEM + BT-Test formulation and BT-DMEM + UT-Test formulation groups, respectively at 0.125 µg/mL compared with the untreated group. Anti-wrinkling activity in HFF-1 cells showed an improved cell viability by 5.49% and 11.26% at 1.25 and 0.625 µg/mL, respectively in BT-DMEM + BT-Test formulation group compared with the untreated group. Wound healing scratch assay results showed a significant healing rate by 5% and 10% in HFF-1 and HaCaT cells lines, respectively with high cellular migration of fibroblast and keratinocytes. Overall, it can be concluded that the Biofield Energy Healing (The Trivedi Effect®) based test formulation and cell medium could be helpful against various skin disorders and can be used in psoriasis, seborrheic dermatitis, skin cancer, rashes from bacterial or fungal infections as anti-wrinkling, skin-whitening, anti-ageing, and rejuvenating agent.
Seismology of the Sun and the Distant Stars 2016
Natural Sciences (Astrophysics and Astrononmy)
Start date:
10.07.2016
End date:
14.07.2016
Location:
Angra do Heroísmo, Terceira-Açores, Portugal
Towards a Multimodal Construction Grammar
Humanities (Linguistics)
Start date:
09.03.2016
End date:
11.03.2016
Location:
Osnabrück, Germany
The Physics of the Sun from the Interior to the Outer Atmosphere
Natural Sciences (Astrophysics and Astrononmy)
Start date:
14.01.2017
End date:
19.01.2017
Location:
Arrecife, Lanzarote, Spain
Helicity Thinkshop 3
Natural Sciences (Astrophysics and Astrononmy)
Start date:
19.11.2017
End date:
24.11.2017
Location:
Tokyo (Japan)
Some of our users