introduction
Find important work in your field of research
introduction
Be a member of the ScienceMedia Network
introduction
Upload your work and digital content
introduction
Share your videos in your work
Make your conference world-wide visible
Full conference: 299.00€ + VAT only!
Featured
euronews futuris - The Cloudbusters
Natural Sciences (Earth sciences)
Date of upload:
01.09.2015
Co-author:
Caption:
A 200 metre tower is one of the tools being used to crack one of the trickiest problems in climate science - clouds.
Bulging and buckling of a hose under pressure
Engineering (Mechanical engineering)
Date of upload:
12.10.2015
Co-author:
C. Dehning, T. Kraft
Caption:
The movie shows a fluid in a rigid pipe which is connected to a hose of rubber-like material. A piston moves downward through the pipe thereby pushing the fluid into the hose which is sealed by a disc at the lower end. The hose bulges due to the increasing pressure until, finally, buckling into a state of lower energy occurs. The direction of the buckling is purely statistical.
Use Case II: Real-time Data Stream
Computer Sciences (Artificial intelligence)
Date of upload:
28.09.2015
Co-author:
Arkady Godin (Mitre)
Caption:
Use Case II: Real-time Data Stream Analytical Publish/Subscribe System Shall Inbound adapters be "passive" connectors Pub/Sub and Notification Standards Subscriptions in Analytic terms Pub/Sub as an Analytical Subscriber Analytics: Bridging "Sub to Pub" divide Analytical Subscription Management
Quasi-periodic pulsations in stellar flares
Natural Sciences (Astrophysics and Astrononmy)
Date of upload:
10.09.2015
Co-author:
Chloe Pugh, Valery Nakariakov
Abstract:
Quasi-periodic pulsations (QPPs) are a common feature of solar flares that are observed in many different wavelengths. Although QPPs appear not to be as abundant in white light Kepler flare light curves as they are in solar flares, albeit in different wavelengths the structure of the pulsations are strikingly similar, hinting that the same underlying processes govern both solar and stellar flares. Here we consider a special case, observed on KIC9655129, which shows evidence of multiple periodicities. We speculate that the presence of multiple periodicities is a good indication that the QPPs were caused by magnetohydrodynamic oscillations, further strengthening the case that the physical processes in operation during stellar flares are at least analogous to those in solar flares.
Accurate numerical solutions to the forward problem of local helioseismology
Natural Sciences (Mathematics)
Date of upload:
14.07.2016
Co-author:
Michael Leguèbe, Damien Fournier, Aaron C. Birch, Laurent Gizon in Collaboration with Inria team Magique3D
Abstract:
We compute acoustic Green’s functions in an axisymmetric solar background model, which may include a meridional flow and differential rotation. The wave equation is solved in the frequency domain using a finite element solver. A transparent boundary condition for the waves is implemented in the chromosphere, which represents a great improvement in computational efficiency compared to implementations based on ’sponge layers’. We perform various convergence studies that demonstrate that wave travel times can be computed with an accuracy of 0.001 s. This high level of numerical accuracy is required to interpret travel times in the deep interior, and is achieved thanks to a refined mesh in the near surface layers and around the source of excitation. The wave solver presented here lays the ground for future iterative inversion methods for flows in the deep solar interior.
Observations of Red Giants with SONG
Natural Sciences (Astrophysics and Astrononmy)
Date of upload:
03.08.2016
Co-author:
Abstract:
One of the outstanding and unforeseen results from the Kepler mission is our new insight and understanding of red giant stars. These highly evolved stars, which are in the last stages of their life, provide extremely useful information when trying to develop stellar evolutionary models. Furthermore, they show stochastically excited oscillations thus allowing to use asteroseismic techniques to derive conditions of the most internal layers. Bright giants stars are well suited to be studied with the 1m telescopes in the Stellar Observations Network Group project (SONG) using a high resolution echelle spectrograph performing high precision measurements of their the radial velocity. The prototype node- the Hertzsprung SONG telescope- was inaugurated in October 2014 and is located at the Teide Observatory on Tenerife and providing continuous and high quality observations since then, When selecting the best targets for SONG, a precision of 1-2 m/s per point is reachable using the iodine method and a number of red giants have been observed with the SONG telescope since scientific operation started. In this talk we present the first results of these specific campaigns for a few red giants in which eigenmodes have been identified and their global seismic parameters derived.
Comparison of damping mechanisms for transverse waves in coronal loops.
Natural Sciences (Astrophysics and Astrononmy)
Date of upload:
22.01.2017
Co-author:
I. Arregui
Abstract:
Damping of transverse waves in different solar coronal structures is a commonly observed property and a source of information about coronal conditions. Although resonant damping seems to be the most accepted mechanism for damping of transverse waves, there are other possible mechanisms. We have carried out a Bayesian analysis comparing three different models which could explain the damping in coronal loops. Our results indicate that resonant absorption is the most probable mechanism for low ratios between damping time and wave period, while the wave leakage mechanism is the best candidate for high ratios. Nonetheless, the evidence for one model against another shows a strong dependence on the data errors.
Gas towards the Gamma­-ray-­Emitting Supernova Remnant W28 (and others)
Natural Sciences (Astrophysics and Astrononmy)
Date of upload:
21.12.2015
Co-author:
Gavin Rowell, Matthieu Renaud, Phoebe de Wilt, Fabien Voisin, Yasuo Fukui, Michael Burton, Andrew Walsh, Akiko Kawamura, Andrew Walsh, Akiko Kawamura, Felix Aharonian
Abstract:
We present the results of molecular spectral line observations towards Supernova Remnants such as W28, RX J1713.7-3946 and HESS J1731-347. These remnants exhibit TeV gamma-ray emission, beacons for the presence of enhanced populations of high energy particles. It follows that these objects may accelerate Galactic cosmic-ray protons via the diffusive shock mechanism, but knowledge of the environment local to such remnants is required to constrain such scenarios. The Mopra radio telescope is ideal for probing the interstellar environments of HESS gamma-ray sources through large-scale molecular line surveys. Mopra can be employed to hunt for dense gas-tracing CS and NH3 transitions to identify potential cosmic-ray target material, while simultaneously searching for shock-tracing SiO emission lines which can directly highlight shock-disrupted gas. Furthermore, spectral line width gives an insight into gas dynamics and Mopra is capable of measuring this at a ~1' resolution over degree-scale regions. We present results from recent 7 and 12mm surveys towards the above-mentioned TeV-emitting Supernova Remnants and discuss the implications for distance, the diffusion of cosmic-rays and the high energy gamma-ray spectrum.
Survival and activity of bacteria in air: Why do we care?
Natural Sciences (Biology)
Date of upload:
25.04.2016
Co-author:
Kai Finster, Meilee Ling, Maher Sahyoun, Morten Dreyer, Stine Holm, Martin Rasmussen, Stephanie Pilgaard
Abstract:
The presentation deals with activity of airborne microbial cells and how this is important for expanding our understanding of habitability and biosignatures.
Field line helicity as a tool for coronal physics
Natural Sciences (Physics)
Date of upload:
22.11.2017
Co-author:
G. Hornig, M.H. Page
Abstract:
What if there were a way to identify **where** the magnetic helicity is concentrated within a three- dimensional magnetic field? At first sight this question appears meaningless, since magnetic helicity is an integral over the whole volume of the magnetic field. But, in fact, it is possible to decompose this total helicity as an integral over individual "field line helicities" for each magnetic field line in the domain. All of these are ideal-invariant, topological quantities, and they allow us to quantify in a meaningful way how magnetic helicity is distributed within the domain. In this talk, I will show how this idea can be practically applied to typical extrapolations of the Sun's coronal magnetic field that are used in solar physics.
Development of instrumentation for solar observations at the Brazilian National Institute for Space
Natural Sciences (Physics)
Date of upload:
15.11.2018
Co-author:
Abstract:
The solar electromagnetic and corpuscular emissions are strongly modulated by the evolution of the magnetic structure of the solar atmosphere, which is imprinted in the solar surface. The evolution of the magnetic structure leads to gradual changes in the solar activity (space climate) as well as violent events (space weather) that affect the whole Heliosphere. In particular, the solar output affects the ionized and neutral components of the Earth’s atmosphere that have a direct impact on human activities from agriculture to high-technological systems. The solar magnetism is driven by the energy transport from the inner layers to the solar atmosphere. Although systematic observations have revealed several features related to the evolution of solar activity, there is not a complete explanation of the physical processes that lead to solar activity cyclic variability and its long-term changes. Here we present a brief description of the development of a magnetograph and visible-light imager instrument to study the solar dynamo processes through observations of the solar surface magnetic field distribution. The instrument will provide measurements of the vector magnetic field and the line-of-sight velocity in the solar photosphere. As the magnetic field anchored at the solar surface produces most of the structures and energetic events in the upper solar atmosphere and significantly influences the Heliosphere, the development of this instrument plays an essential role in reaching the scientific goals of The Atmospheric and Space Science Coordination (CEA) at the Brazilian National Institute for Space Research (INPE). In particular, the INPE’s Space Weather program will benefit most from the development of this technology. Additionally, we expect that this project will be the starting point to establish a robust research program on Solar System Research at INPE. The proposed instrument has been designed to operate on the ground, but with a conceptual design flexible enough to be adapted to work on a balloon and space-based platforms. In this way, our main aim is acquiring know-how progressively to build state-of-art solar vector magnetograph and visible-light imagers for space-based platforms to contribute to the efforts of the solar-terrestrial physics community to address the main unanswered questions on how our nearby Star works.
Physicochemical and Spectral Characterization of Biofield Energy Treated 4-Methylbenzoic Acid
Natural Sciences (Analytical Chemistry, Method Development (Chemistr)
Date of upload:
08.09.2016
Co-author:
Alice Branton, Dahryn Trivedi, Gopal Nayak, Ragini Singh, Snehasis Jana
Abstract:
The present study was aimed to analyse the impact of biofield energy treatment on the physicochemical and spectral properties of 4-MBA. The compound was divided into two parts which are referred as the control and treated sample. The treated sample was subjected to Mr. Trivedi’s biofield energy treatment and analysed with respect to the control sample. The various analytical techniques used were X-ray diffraction (XRD), surface area analysis, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), Fourier transform infrared (FT-IR), and UV-visible spectroscopy. The XRD data revealed the alteration in the relative intensities of the peaks as well as reduction in the average crystallite size (24.62%) of the treated sample as compared to the control. The surface area analysis revealed a slight reduction in the surface area of the treated sample. The differential scanning calorimetry analysis reported a slight increase in the melting point while significant reduction in the latent heat of fusion of the treated sample (39.96 J/g) as compared to the control (133.72 J/g). Moreover, the TGA thermogram of the treated sample revealed the reduction in the onset temperature and maximum thermal degradation temperature as compared to the control. However, the FT-IR and UV-Vis spectra of treated sample did not show any significant alteration as compared to their respective control spectra. The overall data indicated the improved physical and thermal properties of the biofield treated 4-MBA sample that might be helpful in increasing the reaction kinetics, where it will be used as a reaction intermediate.
Evaluation of Physical, Thermal and Spectroscopic Properties of Biofield Treated P-Hydroxyacetophenone
Natural Sciences (Analytical Chemistry, Method Development (Chemistr)
Date of upload:
19.11.2016
Co-author:
Mahendra Kumar Trivedi, Alice Branton, Dahryn Trivedi, Ragini Singh, Snehasis Jana
Abstract:
P-Hydroxyacetophenone (pHAP) is an aromatic ketone derivative that is mainly used in the manufacturing of various pharmaceuticals, flavours, fragrances, etc. In the present study, the impact of Mr. Trivedi’s biofield energy treatment was analysed on various properties of pHAP viz. crystallite size, surface area, melting temperature, thermal decomposition, and spectral properties. The pHAP sample was divided into two parts; one was kept as control sample while another part was named as treated sample. The treated sample was given the biofield energy treatment and various parameters were analysed as compared to the control sample by X-ray diffraction (XRD), surface area analyser, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), ultraviolet-visible (UV-VIS), and Fourier transform infrared (FT-IR) spectroscopy. The XRD studies showed the decrease in crystallite size of the treated sample (61.25 nm) as compared to the control (84.18 nm); however the intensity of peaks in diffractogram was increased in treated sample. Besides, the surface area of treated sample was decreased by 41.17% as compared to the control. The TGA analysis revealed that onset temperature as well as Tmax (maximum thermal decomposition temperature) was increased in the treated sample. However, the latent heat of fusion (ΔH) was decreased from 124.56 J/g (control) to 103.24 J/g in the treated sample. The treated and control samples were also evaluated by UV-Vis and FT-IR spectroscopy and did not show any significant alteration in spectra of treated sample as compared to the respective control. Hence, the overall results suggest that there was an impact of biofield energy treatment on the physical and thermal properties of pHAP sample.
LC-MS, GC-MS, and NMR Spectroscopy Based Evaluation of the Energy of Consciousness Healing Treated Withania somnifera (Ashwagandha) Root Extract
Natural Sciences ()
Date of upload:
28.06.2017
Co-author:
Alice Branton, Dahryn Trivedi, Gopal Nayak, Ariadne Esmene Afaganis, Barbara Marie Bader, Brian A. Weekes, Daphne Luisa Dumas, Denise Marie Fiedler, Dennille Mellesia Smith, Desi Pano, Donna Felice Galla, Donna Maria Alija, Elaine Barbara Mullins, Elaine M. Scorza, Ellia O'Donnell, Fabio Massimo Paciucci, Frances Goodman Warlick, Haddon Norman Salt, Inthirani Arul, Jacqueline Y. Andrews, James Jay McLeran, James Stephen Burnett, Jean Caroline White, Parthasarathi Panda, Kalyan Kumar Sethi, Snehasis Jana
Abstract:
Withania somnifera root extract which contains withanolides as major active constituent and it is used traditionally for the prevention and treatment of several diseases. The objective of the current study was to investigate the impact of The Trivedi Effect® - Consciousness Energy Healing Treatment on the structural properties of the ashwagandha root extract using LC-MS, GC-MS, and NMR spectroscopy. Ashwagandha root extract was divided into two parts – one part was control (without treatment), while other part was treated with the Consciousness Energy Healing Treatment remotely by twenty renowned Biofield Energy Healers and defined as the Biofield Energy Treated sample. The LC-MS analysis revealed that the retention time of the phytoconstituents remained same in the control and Biofield Energy Treated samples, whereas the peak area% i.e. the relative amount of the phytoconstituents at respective retention time was significantly altered. The peak area% at Rt of 5.6, 6.8, 6.9, 7.2, 7.9, 8.4, 8.5, 8.6, and 9.2 minutes of the treated sample were increased significantly in the range of 1.46% to 253.06% compared to the control sample. In the contrary, the peak area% of the treated sample at Rt of 6.4 and 8.2 minutes were significantly decreased by 12.72% and 17.35%, respectively with respect to the control sample. A total of 16 withanolides such as withanoside IV, coagulin Q, viscosa lactone B, dihydrowithanolide D, withanolide A, withaferin A, withanone, withanolide D, ixocarpalactone A, withanolide sulfoxide, withanolide B, etc. were proposed with their structure from the molecular mass at m/z 783, 621, 489, 473, 767, 471, 505, and 992 at retention times of 6.4, 6.8, 7.2, 7.9, 8.2, 8.4, and 9.1 minutes, respectively with the help of LC-MS, GC-MS and NMR data of both the control and Biofield Energy Treated samples. The mass peak intensities of the Biofield Energy Treated sample were significantly changed in the range of -81.36% to 1720.90% compared with the control sample at the same retention time. These findings suggest that The Trivedi Effect® - Consciousness Energy Healing Treatment could be beneficial for altering the concentration of the phytoconstituents in the ashwagandha root extract by modifying their intrinsic physicochemical properties, which might be helpful to improve the bioavailability of active constituents of W. somnifera extract that might provide better therapeutic response against inflammatory diseases, immunological disorders, stress, arthritis, cancer, diabetes, sexual disorders, aging, and other chronic infections.
Solid State Characterization of Withania somnifera (Ashwagandha) Root Extract After Treatment with Consciousness Energy Healing
Natural Sciences ()
Date of upload:
12.07.2017
Co-author:
Mahendra Kumar Trivedi, Alice Branton, Gopal Nayak, William Dean Plikerd, Peter L. Surguy, Robert John Kock, Rolando Baptista Piedad, Russell Phillip Callas, Sakina A. Ansari, Sandra Lee Barrett, Sara Friedman, Steven Lee Christie, Su-Mei Chen Liu, Susan Elizabeth Starling, Susan Jones, Susan Mardis Allen, Susanne Kathrin Wasmus, Terry Ann Benczik, Thomas Charles Slade, Thomas Orban, Victoria L. Vannes, Victoria Margot Schlosser, Yusif Sarkis Yamin Albino, Parthasarathi Panda, Kalyan Kumar Sethi, Snehasis Jana
Abstract:
Ashwagandha root extract is useful as an herbal medicine and nutraceuticals for the prevention and treatment of various diseases. The aim of the current study was to evaluate the influence of Consciousness Energy Healing Treatment (The Trivedi Effect®) on the physico-chemical, thermal and behavioral properties of ashwagandha root extract using powder X-ray diffraction (PXRD), particle size distribution analysis (PSD), Fourier transform infrared (FT-IR) spectrometry, UV-Vis spectroscopy, thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). Ashwagandha root extract was divided into two parts – one part was control without any Biofield Energy Treatment, and another part was treated with the Consciousness Energy Healing Treatment remotely by twenty renowned Biofield Energy Healers and defined as Biofield Energy Treated sample. The PXRD analysis concluded that both the control and treated samples were amorphous in nature. The particle size values at d10, d50, and d90 of the treated sample were significantly decreased by 36.78%, 15.18%, and 5.06%, respectively compared with the control sample. Likewise, the surface area of the treated sample was significantly increased by 85.14% compared to the control sample. FT-IR results showed a small impact of Consciousness Energy Healing Treatment on the phytoconstituents of ashwagandha root extract to reduce the force constant of O-H (str.) bond. UV-vis analysis revealed that the wavelength for the maximum absorbance (λmax) of both the samples was at 206.4 in methanol. TGA revealed the three steps of thermal degradation and the total weight loss was decreased by 0.73% in the treated sample compared to the control sample. Consequently, the maximum thermal degradation temperature was found at 272.53°C and 393.35°C for two broad peaks in the treated sample was increased by 0.05% and 0.08%, respectively compared to the control the sample (272.67°C and 393.66°C). The DSC analysis indicated that the evaporation temperature and latent heat of vaporization were lowered significantly by 4.98% and 35.67%, respectively in the treated sample compared with the control sample. The current outcomes suggested that the Energy of Consciousness Healing Treatment might have the amazing capacity to enhance the solubility, dissolution, absorption, bioavailability and thermal stability of ashwagandha root extract in the various form of pharmaceutical and nutraceutical formulation by modifying its particle size and surface area. Thus, the Biofield Energy Treated ashwagandha root extract might provide better therapeutic response against inflammatory diseases, immunological disorders, sexual disorders, arthritis, stress, cancer, ageing, diabetes, and other chronic infections.
Seismology of the Sun and the Distant Stars 2016
Natural Sciences (Astrophysics and Astrononmy)
Start date:
10.07.2016
End date:
14.07.2016
Location:
Angra do Heroísmo, Terceira-Açores, Portugal
Towards a Multimodal Construction Grammar
Humanities (Linguistics)
Start date:
09.03.2016
End date:
11.03.2016
Location:
Osnabrück, Germany
The Physics of the Sun from the Interior to the Outer Atmosphere
Natural Sciences (Astrophysics and Astrononmy)
Start date:
14.01.2017
End date:
19.01.2017
Location:
Arrecife, Lanzarote, Spain
Helicity Thinkshop 3
Natural Sciences (Astrophysics and Astrononmy)
Start date:
19.11.2017
End date:
24.11.2017
Location:
Tokyo (Japan)
Some of our users