My account
Information
Mahendra Kumar Trivedi
Trivedi Global Inc.
Position
Independent Researcher
Department
Field of research
Natural Sciences ()
Email
mahendra@trivedisrl.com
My OpenAccess portfolio

There are no uploaded videos yet.

There are no uploaded posters yet.

img
Physicochemical and Spectroscopic Properties of Biofield Energy Treated Protose
Natural Sciences (Biology)
652 views
Date of upload:
29.08.2016
Co-author:
Alice Branton, Dahryn Trivedi, Gopal Nayak, Khemraj Bairwa, Snehasis Jana
Abstract:
Protose is the enzyme digest of mixed proteins that is recommended for culture media, bulk production of enzymes, antibiotics, toxins, veterinary preparations, etc. This study was proposed to evaluate the effect of biofield energy treatment on the physicochemical and spectroscopic properties of protose. The study was achieved in two groups i.e. control and treated. The control group was remained as untreated, while the treated group was received Mr. Trivedi’s biofield energy treatment. Finally, both the control and treated samples were evaluated using various analytical techniques. The X-ray diffractograms (XRD) of control and treated samples showed the halo patterns peak that suggested the amorphous nature of both the samples of protose. The particle size analysis showed about 12.68% and 90.94 increase in the average particle size (d50) and d99 (particle size below which 99% particles are present) of treated protose with respect to the control. The surface area analysis revealed the 4.96% decrease in the surface area of treated sample as compared to the control sample. The differential scanning calorimetry (DSC) analysis revealed the 22.49% increase in the latent heat of fusion of treated sample as compared to the control. Thermogravimetric analysis (TGA) analysis showed increase in maximum thermal degradation temperature (Tmax) by 5.02% in treated sample as compared to the control. The increase in Tmax might be correlated with increased thermal stability of treated sample as compared to the control. Fourier transform infrared (FT-IR) study showed the alteration in the vibrational frequency of functional groups like N-H, C-H, and S=O of treated protose as compared to the control sample. Based on the overall analytical results, it is concluded that Mr. Trivedi’s biofield energy treatment has a significant impact on the physicochemical and spectral properties of protose. As a result, the treated protose might be more effective as a culture medium than the corresponding control.
img
Effect of Biofield Treatment on Physical, Thermal, and Spectral Properties of SFRE 199-1 Mammalian Cell Culture Medium
Natural Sciences (Biology)
555 views
Date of upload:
30.08.2016
Co-author:
Alice Branton, Dahryn Trivedi, Gopal Nayak, Khemraj Bairwa, Snehasis Jana
Abstract:
SFRE 199-1 medium (SFRE-M) is important mammalian cell culture medium, used for the culture of primary cells of mammals such as baboon kidney cells. The present study was attempted to evaluate the impact of biofield energy treatment on the physical, thermal and spectral properties of SFRE-M. The study was accomplished in two groups; one was set as control while another was subjected to Mr. Trivedi’s biofield energy treatment and coded as treated group. Subsequently, the control and treated samples were analyzed using various analytical techniques. The CHNO analysis showed about 2.16, 4.87, and 5.89% decrease in percent contents of carbon, hydrogen, and oxygen, respectively; while 9.49% increase in nitrogen contents of treated sample as compared to the control. X-ray diffraction (XRD) analysis showed 7.23% decrease in crystallite size of treated sample as compared to the control. The thermogravimetric analysis (TGA) analysis showed the increase in onset temperature of thermal degradation by 19.61% in treated sample with respect to the control. The control sample showed the 48.63% weight loss during the thermal degradation temperature (Tmax) while the treated sample showed only 13.62% weight loss during the Tmax. The differential scanning calorimetry (DSC) analysis showed the 62.58% increase in the latent heat of fusion of treated sample with respect to the control sample. The Fourier transform infrared spectroscopy (FT-IR) spectrum of treated SFRE-M showed the alteration in the wavenumber of C-O, C-N and C-H vibrations in the treated sample as compared to the control. Altogether, the XRD, TGA-DTG, DSC, and FT-IR analysis suggest that Mr. Trivedi’s biofield energy treatment has the impact on physical, thermal and spectral properties of SFRE-M. The treated SFRE-M was more thermal stable than the control SFRE-M and can be used as the better culture media for mammalian cell culture.
img
Biochemical Differentiation and Molecular Characterization of Biofield Treated Vibrio parahaemolyticus
Natural Sciences (Biology)
525 views
Date of upload:
30.08.2016
Co-author:
Alice Branton, Dahryn Trivedi, Gopal Nayak, Sambhu Charan Mondal, Snehasis Jana
Abstract:
The recent emergence of the Vibrio parahaemolyticus (V. parahaemolyticus) is a pandemic. For the safety concern of seafood, consumer monitoring of this organism in seafood is very much essential. The current study was undertaken to evaluate the impact of Mr. Trivedi’s biofield energy treatment on [ATCC-17802] strain of V. parahaemolyticus for its biochemical characteristics, biotype and 16S rDNA analysis. The lyophilized strain of V. parahaemolyticus was divided into two parts, Group (Gr.) I: control and Gr. II: treated. Gr. II was further subdivided into two parts, Gr. IIA and Gr. IIB. Gr. IIA was analyzed on day 10, whereas, Gr. IIB was stored and analyzed on day 142 (Study I). After retreatment of Gr. IIB on day 142 (Study II), the sample was divided into three separate tubes. The tubes first, second and third were analyzed on day 5, 10, and 15, respectively. The biochemical reaction and biotyping were performed using automated MicroScan Walk-Away® system. The 16S rDNA sequencing was carried out to correlate the phylogenetic relationship of V. parahaemolyticus with other bacterial species after the treatment. The results of biochemical reactions were altered 24.24%, out of thirty-three in the treated groups with respect to the control. Moreover, negative (-) reaction of urea was changed to positive (+) in the revived treated Gr. IIB, Study II on day 15 as compared to the control. Besides, biotype number was substantially changed in all the treated groups as compared to the control. However, change in organisms were reported in Gr. IIA on day 10 and in Gr. IIB; Study II on day 5 as Shewanella putrefaciens and Moraxella/Psychrobacter spp., respectively with respect to the control i.e. Vibrio sp. SF. 16S rDNA analysis showed that the identified sample in this experiment was V. parahaemolyticus after biofield treatment, and the nearest homolog genus-species was observed as Vibrio natriegens with 98% gene identity. The results envisaged that the biofield energy treatment showed an alteration in biochemical reaction pattern and biotype number on the strain of V. parahaemolyticus.
img
Characterization of Physical, Thermal and Spectral Properties of Biofield Treated 2-Aminopyridine
Natural Sciences (Analytical Chemistry, Method Development (Chemistr)
450 views
Date of upload:
30.08.2016
Co-author:
Alice Branton, Dahryn Trivedi, Gopal Nayak, Rakesh Kumar Mishra, Snehasis Jana
Abstract:
2-Aminopyridine is an important compound, which is used as intermediate for the synthesis of pharmaceutical compounds. The present work was aimed to assess the effect of Mr. Trivedi’s biofield energy treatment on the physical, thermal and spectral characteristics of 2-AP. The work was accomplished by dividing the sample in two parts i.e. one part was remained untreated, and another part had received biofield energy treatment. Subsequently, the samples were analyzed using various characterization techniques such as X-ray diffraction, differential scanning calorimetry, thermogravimetric analysis, ultra violet-visible spectroscopy, and Fourier transform infrared spectroscopy. The XRD analysis revealed a decrease in crystallite size of the treated sample (91.80 nm) as compared to the control sample (97.99 nm). Additionally, the result showed an increase in Bragg’s angle (2θ) of the treated sample as compared to the control. The DSC and Differential thermal analysis analysis showed an increase in melting temperature of the treated 2-AP with respect to the control. Moreover, the latent heat of fusion of the treated sample was increased by 3.08%. The TGA analysis showed an increase in onset of thermal degradation (Tonset), and maximum thermal decomposition temperature (Tmax) of the treated 2-AP as compared to the control sample. Additionally, the treated sample showed a reduction in weight loss as compared with the control indicating higher thermal stability of the sample. UV-visible analysis showed no changes in the absorption peak of the treated sample as compared to the control. The FT-IR spectroscopic results showed downward shifting of C-H stretching vibration 2991→2955 cm-1 in treated sample with respect to the control.

There are no uploaded presentations yet.

There are no uploaded conferences yet.