My account
Information
Dahryn Trivedi
Trivedi Global Inc.
Position
Researcher
Department
Field of research
Natural Sciences ()
Email
dahryn@trivedisrl.com
My OpenAccess portfolio

There are no uploaded videos yet.

There are no uploaded posters yet.

img
Characterization of Physicochemical and Thermal Properties of Biofield Treated Ethyl Cellulose and Methyl Cellulose
Natural Sciences (Analytical Chemistry, Method Development (Chemistr)
636 views
Date of upload:
16.12.2016
Co-author:
Mahendra Kumar Trivedi, Alice Branton, Gopal Nayak, Rakesh Kumar Mishra, Snehasis Jana
Abstract:
Cellulose and its derivatives are used as potential matrices for biomaterials and tissue engineering applications. The objective of present research was to investigate the influence of biofield treatment on physical, chemical and thermal properties of ethyl cellulose (EC) and methyl cellulose (MC). The study was performed in two groups (control and treated). The control group remained as untreated, and biofield treatment was given to treated group. The biofield treated polymers are characterized by Fourier transform infrared spectroscopy (FT-IR), CHNSO analysis, X-ray diffraction study (XRD), Differential Scanning calorimetry (DSC), and thermogravimetric analysis (TGA). FT-IR analysis of treated EC showed downward shifting in C-O-C stretching peak from 1091→1066 cm-1 with respect to control. However, the treated MC showed upward shifting of –OH stretching (3413→3475) and downward shifting in C-O stretching (1647→1635 cm-1) vibrations with respect to control MC. CHNSO analysis showed substantial increase in percent hydrogen and oxygen in treated polymers with respect to control. XRD diffractogram of EC and MC affirmed the typical semi-crystalline nature. The crystallite size was substantially increased by 20.54% in treated EC with respect to control. However, the treated MC showed decrease in crystallite by 61.59% with respect to control. DSC analysis of treated EC showed minimal changes in crystallization temperature with respect to control sample. However, the treated and control MC did not show any crystallization temperature in the samples. TGA analysis of treated EC showed increase in thermal stability with respect to control. However, the TGA thermogram of treated MC showed reduction in thermal stability as compared to control. Overall, the result showed substantial alteration in physical, chemical and thermal properties of treated EC and MC.
img
Biofield Treatment: An Effective Strategy for Modulating the Physical and Thermal Properties of O-Nitrophenol, M-Nitrophenol & P-Tertiary Butyl Phenol
Natural Sciences (Analytical Chemistry, Method Development (Chemistr)
456 views
Date of upload:
16.12.2016
Co-author:
Mahendra Kumar Trivedi, Rama Mohan Tallapragada, Alice Branton, Gopal Nayak, Rakesh Kumar Mishra, Snehasis Jana
Abstract:
Phenolic compounds are commonly used for diverse applications such as in pharmaceuticals, chemicals, rubber, dyes and pigments. The objective of present research was to study the impact of Mr. Trivedi’s biofield treatment on physical and thermal properties of phenol derivatives such as o-nitrophenol (ONP), m-nitrophenol (MNP) and p-tertiary butyl phenol (TBP). The study was performed in two groups (control and treated). The control and treated compounds were characterized using X-ray diffraction (XRD), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and surface area analysis. XRD analysis showed increase in crystallite size by 16.05% in treated ONP as compared to control. However, the treated MNP showed decrease in crystallite size by 16.17% as compared to control. The treated TBP showed increase in crystallite size by 5.20% as compared to control. DSC of treated MNP exhibited increase in melting temperature with respect to control, which may be correlated to higher thermal stability of treated sample. However, the treated TBP exhibited no significant change in melting temperature with respect to control. TGA analysis of treated ONP and TBP showed an increase in maximum thermal decomposition temperature (Tmax) as compared to control. However, the treated MNP showed slight decrease in Tmax in comparison with control sample. Surface area analysis of treated ONP showed decrease in surface area by 65.5%. However, surface area was increased by 40.7% in treated MNP as compared to control. These results suggest that biofield treatment has significant effect on physical and thermal properties of ONP, MNP and TBP.
img
Assessment of Antibiogram of Biofield Energy Treated Serratia marcescens
Natural Sciences (Biology)
528 views
Date of upload:
16.12.2016
Co-author:
Mahendra Kumar Trivedi, Alice Branton, Gopal Nayak, Mayank Gangwar, Snehasis Jana
Abstract:
Serratia marcescens (S. marcescens) has become an important nosocomial pathogens and increased resistant isolates were reported. The current study evaluates the impact of an alternate energy medicine i.e. Mr. Trivedi’s biofield energy treatment on S. marcescens for changes in sensitivity pattern of antimicrobial, biochemical characteristics, and biotype number. S. marcescens cells were procured from MicroBioLogics Inc., USA in sealed pack bearing the American Type Culture Collection (ATCC 13880) number and divided into two groups, Group (Gr.) I: control and Gr. II: treated. Gr. II was further subdivided into two sub-groups, Gr. IIA and Gr. IIB. Gr. IIA was analyzed on day 10, while Gr. IIB was stored and analyzed on day 159 (Study I). After retreatment on day 159, the sample (Study II) was divided into three separate tubes as first, second and third tube, which were analyzed on day 5, 10 and 15 respectively. All experimental parameters were studied using the automated MicroScan Walk-Away® system. Antimicrobial susceptibility results showed that 42.85% of tested antimicrobials results in altered sensitivity pattern, while decreased minimum inhibitory concentration values in 40.62% tested antimicrobials as compared to the control after biofield treatment on S. marcescens. The biochemical study showed that 12 out of 33 tested biochemicals (36.36%) were reported for alteration of biochemical reactions pattern as compared to the control. Biotype study showed an alteration in biotype number in all the experimental treated groups as compared to the control. These results suggested that biofield energy treatment has a significant impact on S. marcescens. Overall, it is expected that Mr. Trivedi’s biofield energy treatment as an integrative medicine could be better therapy approach in near future.
img
Determination of Isotopic Abundance of 2H, 13C, 18O, and 37Cl in Biofield Energy Treated Dichlorophenol Isomers
Natural Sciences (Analytical Chemistry, Method Development (Chemistr)
469 views
Date of upload:
16.12.2016
Co-author:
Mahendra Kumar Trivedi, Alice Branton, Gopal Nayak, Gunin Saikia, Snehasis Jana
Abstract:
2,4-Dichlorophenol (2,4-DCP) and 2,6-dichlorophenol (2,6-DCP) are two isomers of dichlorophenols, have been used as preservative agents for wood, paints, vegetable fibers and as intermediates in the production of pharmaceuticals and dyes. The aim of the study was to evaluate the impact of biofield energy treatment on the isotopic abundance ratios of 2H/1H or 13C/12C, and 18O/16O or 37Cl/35Cl, in dichlorophenol isomers using gas chromatography-mass spectrometry (GC-MS). The 2,4-DCP and 2,6-DCP samples were divided into two parts: control and treated. The control sample remained as untreated, while the treated sample was further divided into four groups as T1, T2, T3, and T4. The treated group was subjected to Mr. Trivedi’s biofield energy treatment. The GC-MS spectra of 2,4-DCP and 2,6-DCP showed three to six m/z peaks at 162, 126, 98, 73, 63, 37 etc. due to the molecular ion peak and fragmented peaks. The isotopic abundance ratios (percentage) in both the isomers were increased significantly after biofield treatment as compared to the control. The isotopic abundance ratio of (PM+1)/PM and (PM+2)/PM after biofield energy treatment were increased by 54.38% and 40.57% in 2,4-DCP and 126.11% and 18.65% in 2,6-DCP, respectively which may affect the bond energy, reactivity and finally stability to the product.

There are no uploaded presentations yet.

There are no uploaded conferences yet.