Characterization of Physical, Spectroscopic and Thermal Properties of Biofield Treated Biphenyl
602 views
28.11.2016
Affiliation
Trivedi Global Inc.; Trivedi Science Research Laboratory Pvt. Ltd.
Main category
Natural Sciences (Analytical Chemistry, Method Development (Chemistr)
Abstract
Biphenyl is used as an intermediate for synthesis of various pharmaceutical compounds. The objective of present research was to investigate the influence of biofield treatment on physical, spectroscopic and thermal properties of biphenyl. The study was performed in two groups (control and treated). The control group remained as untreated, and biofield treatment was given to treated group. The control and treated biphenyl were characterized by X-ray diffraction (XRD), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), Fourier transform infrared (FT-IR) spectroscopy, Ultraviolet-visible (UV-Vis) spectroscopy and surface area analysis. The treated biphenyl showed decrease in intensity of XRD peaks as compared to control. Additionally, crystallite size was decreased in treated biphenyl by 16.82% with respect to control. The treated biphenyl (72.66ºC) showed increase in melting temperature as compared to control biphenyl (70.52ºC). However, the latent heat of fusion (∆H) of treated biphenyl was substantially changed by 18.75% as compared to control. Additionally, the treated biphenyl (155.14ºC) showed alteration in maximum thermal decomposition temperature (Tmax) as compared to control sample (160.97ºC). This showed the alteration in thermal stability of treated biphenyl as compared to control. Spectroscopic analysis (FT-IR and UV-visible) showed no alteration in chemical nature of treated biphenyl with respect to control. Surface area analysis through Brunauer-Emmett-Teller analysis (BET) analyzer showed significant alteration in surface area as compared to control. Overall, the result demonstrated that biofield has substantially affected the physical and thermal nature of biphenyl.
Further information
Further reading
Language
English
DOI
10.18147/smn.2017/paper:422
Do you have problems viewing the pdf-file? Download paper here
If the paper contains inappropriate content, please report the paper. You will be redirected to the landing page.