Experimental Investigation on Physical, Thermal and Spectroscopic Properties of 2-Chlorobenzonitrile: Impact of Biofield Treatment
545 views
28.11.2016
Affiliation
Trivedi Global Inc.; Trivedi Science Research Laboratory Pvt. Ltd.
Main category
Natural Sciences (Analytical Chemistry, Method Development (Chemistr)
Abstract
2-chlorobenzonitrile (2-ClBN) is widely used in the manufacturing of azo dyes, pharmaceuticals, and as intermediate in various chemical reactions. The aim of present study was to evaluate the impact of biofield treatment on physical, thermal and spectroscopic properties of 2-ClBN. 2-ClBN sample was divided into two groups that served as treated and control. The treated group received Mr. Trivedi’s biofield treatment. Subsequently, the control and treated samples were evaluated using X-ray diffraction (XRD), surface area analyser, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), Fourier transform infrared (FT-IR) and ultraviolet-visible (UV-Vis) spectroscopy. XRD result showed a decrease in crystallite size in treated samples i.e. 4.88% in 2-ClBN along with the increase in peak intensity as compared to control. However, surface area analysis showed a decrease in surface area of 64.53% in treated 2-ClBN sample as compared to the control. Furthermore, DSC analysis results showed a significant increase in the latent heat of fusion (28.74%) and a slight increase in melting temperature (2.05%) in treated sample as compared to the control. Moreover, TGA/DTG studies showed that the control and treated 2-ClBN samples lost 61.05% and 46.15% of their weight, respectively. The FT-IR spectra did not show any significant change in treated 2-ClBN sample as compared to control. However, UV-Vis spectra showed an increase in the intensity of peak as compared to control sample. These findings suggest that biofield treatment has significantly altered the physical, thermal and spectroscopic properties of 2-ClBN, which could make them more useful as a chemical intermediate.
Further information
Further reading
Language
English
DOI
10.18147/smn.2017/paper:432
Do you have problems viewing the pdf-file? Download paper here
If the paper contains inappropriate content, please report the paper. You will be redirected to the landing page.