Physicochemical Characterization of Biofield Energy Treated Hi VegTM Acid Hydrolysate
478 views
19.12.2016
Affiliation
Trivedi Global Inc.; Trivedi Science Research Laboratory Pvt. Ltd.
Main category
Natural Sciences (Analytical Chemistry, Method Development (Chemistr)
Abstract
The hydrolysed vegetable proteins are acidic or enzymatic hydrolytic product of proteins derived from various sources such as milk, meat or vegetables. The current study was designed to evaluate the impact of biofield energy treatment on the various physicochemical and spectra properties of Hi VegTM acid hydrolysate i.e. a hydrolysed vegetable protein. The Hi VegTM acid hydrolysate sample was divided into two parts that served as control and treated sample. The treated sample was subjected to the biofield energy treatment and its properties were analysed using particle size analyser, X-ray diffraction (XRD), surface area analyser, UV-visible and infrared (FT-IR) spectroscopy, and thermogravimetric analysis. The results of various parameters were compared with the control (untreated) part. The XRD data showed the decrease in crystallite size of treated sample from 110.27 nm (control) to 79.26 nm. The particle size was also reduced in treated sample as 162.13 μm as compared to the control sample (168.27 μm). Moreover, the surface area analysis revealed the 63.79% increase in the surface area of the biofield treated sample as compared to the control. The UV-Vis spectra of both samples i.e. control and treated showed the absorbance at same wavelength. However, the FT-IR spectroscopy revealed the shifting in peaks corresponding to N-H, C-H, C=O, C-N, and C-S functional groups in the treated sample with respect to the control. The thermal analysis also revealed the alteration in degradation pattern along with increase in onset temperature of degradation and maximum degradation temperature in the treated sample as compared to the control. The overall data showed the impact of biofield energy treatment on the physicochemical and spectroscopic properties of the treated sample of Hi VegTM acid hydrolysate. The biofield treated sample might show the improved solubility, wettability and thermal stability profile as compared to the control sample.
Further information
Further reading
Language
English
DOI
10.18147/smn.2017/paper:583
Do you have problems viewing the pdf-file? Download paper here
If the paper contains inappropriate content, please report the paper. You will be redirected to the landing page.