logo
CATEGORIES
Sign in
Registration
Sign in
Registration
How it works DOI Tell us About us Contact Privacy policy Terms and conditions
Computer Sciences
Algorithms2
Artificial intelligence45
Computational sciences7
Computer architecture
Data structure
Database
Grapics and visualization1
Networks
Security and cryptography1
Software engineering4
Available Conferences
Economics
Accounting
Change Management
CSR
Finance17
General Management64
Human Ressource
Innovation2
Marketing
Operational Management
Strategy2
Available Conferences
Engineering
Biomedical Engineering8
Chemical engineering4
Civil engineering43
Construction Engineering and Architecture
Electrical engineering5
Heat Energy Technology, Thermal Machines, Fluid Me
Materials Engineering
Mechanical engineering26
Mechanics and Constructive Mechanical Engineering
Process Engineering, Technical Chemistry
Production Technology
Systems Engineering
Available Conferences
Humanities
Linguistics3
Literature7
Available Conferences
Life Sciences
Agriculture, Forestry, Horticulture
Basic Biological and Medical Research
Medicine
Microbiology, Virology, and Immunology
Neurosciences
Plant Sciences
Veterinary Medicine
Zoology
Available Conferences
Medicine
Anaesthesiology
Biomedical Technology and Medical Physics
Cardiology1
Cardiology, Angiology
Cardiothoracic Surgery
Clinical Chemistry and Pathobiochemistry
Dentistry
Dentistry, Oral Surgery
Dermatology
Endocrinology, Diabetology
Epidemiology, Medical Biometry, Medical Informatic
Gastroenterology, Metabolism
Gerontology and Geriatric Medicine
Gynaecology and Obstetrics
Hematology, Oncology, Transfusion Medicine
Human Genetics
Internal medicine11
Neurology8
Nutritional Sciences
Oncology
Otolaryngology
Pathology and Forensic Medicine
Pediatric and Adolescent Medicine
Pharmacology
Pharmacy
Physiology
Pneumology, Clinical Infectiology, Intensive Care
Pneumology, Clinical Infectiology, Intensive Care
Radiation Oncology and Radiobiology
Radiology
Radiology and Nuclear Medicine
Reproductive Medicine/Biology
Rheumatology, Clinical Immunology, Allergology
Sports medicine
Surgery3
Toxicology and Occupational Medicine
Traumatology and Orthopaedics
Urology
Vascular and Visceral Surgery
Available Conferences
Natural Sciences
Analytical Chemistry, Method Development (Chemistr407
Astrophysics and Astrononmy615
Atmospheric Science and Oceanography
Biological Chemistry and Food Chemistry
Biological Physics
Biology216
Chemical Solid State and Surface Research
Condensed Matter Physics
Earth sciences8
Geochemistry, Mineralogy and Crystallography
Geography
Geology and Paleontology
Geophysics and Geodesy
Mathematics3
Molecular Chemistry
Nonlinear Dynamics
Optics, Quantum Optics
Particle, Nuclei, and Fields
Physical and Theoretical Chemistry
Physics152
Physics of Atoms, Molecules and Plasmas
Polymer Research
Statistical Physics, Soft Matter
Water Research
Available Conferences
Social Sciences
Ancient Cultures
Anthropology
Art
Art history1
Cultural studies4
Economics23
Education Sciences
Fine Arts, Music, Theater and Media Studies
History
Jurisprudence
Languages
Law1
Linguistics
Literary Studies
Performing arts
Philosophy
Psychology
Religious Studies
Social and Cultural Anthropology
Social Sciences
Theology
Available Conferences
Home
Natural Sciences
Physics
posters 30
conferences3 videos20 presentations92 posters30 papers7
Home
Natural Sciences
Physics

Results were found under videos, presentations, posters, papers .

There are no videos within this category so far.

There are no presentations within this category so far.

Physics
Sort by
Max Min
Sort by
Youngest Oldest
Sort by
A-Z Z-A
Sort
Accurate numerical solutions to the forward problem of local helioseismology
Natural Sciences (Mathematics)
Chris Hanson
Date of upload:
14.07.2016
Co-author:
Michael Leguèbe, Damien Fournier, Aaron C. Birch, Laurent Gizon in Collaboration with Inria team Magique3D
Abstract:
We compute acoustic Green’s functions in an axisymmetric solar background model, which may include a meridional flow and differential rotation. The wave equation is solved in the frequency domain using a finite element solver. A transparent boundary condition for the waves is implemented in the chromosphere, which represents a great improvement in computational efficiency compared to implementations based on ’sponge layers’. We perform various convergence studies that demonstrate that wave travel times can be computed with an accuracy of 0.001 s. This high level of numerical accuracy is required to interpret travel times in the deep interior, and is achieved thanks to a refined mesh in the near surface layers and around the source of excitation. The wave solver presented here lays the ground for future iterative inversion methods for flows in the deep solar interior.
View more
LARS – the Laser Absolute Reference Spectrograph at the VTT
Natural Sciences (Physics)
Johannes Löhner-Böttcher
Date of upload:
19.01.2017
Co-author:
Wolfgang Schmidt
Abstract:
LARS is an Absolute Reference Spectrograph. It performs fiber-coupled solar observations with the high-resolution Echelle Spectrograph of the Vacuum Tower Telescope (VTT) at the Observatorio del Teide on Tenerife. The scientific instrument is operated by the Kiepenheuer Institute for Solar Physics, Freiburg. The spectral observation is supported by a Laser Frequency Comb which serves as an absolute ruler for the wavelength calibration of the solar spectrum. This novel technique of spectroscopic observations allows the determination of absolute velocities in the solar atmosphere with the best accuracy (m s-1).
View more
High-resolution modeling of the solar photosphere with the ANTARES RHD-code
Natural Sciences (Physics)
Peter Leitner
Date of upload:
19.01.2017
Co-author:
B. Lemmerer, A. Hanslmeier, T. Zaqarashvili, A. Veronig, H. Muthsam
Abstract:
Small granules that do not originate from the fragmentation process of regular sized granular cells and evolve on a considerably shorter timescale populate the intergranular lanes. They are found in high-resolution observational and hydrodynamic simulation data of the quiet sun's photosphere. We study their topology and dynamics based on a segmentation algorithm. The flow field suggests that they represent high-vortical jet-like structures that are found to differentially rotate about their center axis. Their associated high horizontal kinetic energy flux exceeds that of regular granules and may excite significant Poynting flux through MHD kink waves and torsional Alfven waves that would be high enough to effectively heat the chromosphere and corona if only 10% of the wave energy is assumed to be dissipated into heat.
View more
Exploitation of Space Data for Innovative Helio- and Asteroseismology - SpaceInn
Natural Sciences (Physics)
Markus Roth
Date of upload:
16.06.2015
Co-author:
The SpaceInn Board
Abstract:
The European Helio- and Asteroseismology Network (HELAS) has initiated the follow-up project "SpaceInn - Exploitation of Space Data for Innovative Helio- and Asteroseismolgoy" with the mission to build on the existing European strength in the field of time-domain stellar physics. SpaceInn activities, which are organized around the themes of data access, scientific expertise and existing coordination, aim to secure optimal use of the existing and planned data, from space and from the ground, in helio- and asteroseismology. Starting in January 1, 2013, the SpaceInn project is funded for four years by the European Union.
View more
Computational Local Helioseismology in the Frequency Domain
Natural Sciences (Physics)
Chris Hanson
Date of upload:
14.07.2016
Co-author:
Michael Leguèbe, Damien Fournier, Aaron C. Birch, Laurent Gizon in Collaboration with Inria team Magique3D
Abstract:
Forward problems in local helioseismology have thus far been addressed in a semi-analytical fashion using the Born approximation and normal-mode expansions or direct simulations. However, it has proven difficult to take into account geometrical and instrumental effects. To avoid these difficulties we employ a numerical method to determine the impulse response of a solar model in a 2.5D geometry. Solving the wave equation in the frequency domain avoids the difficulties (instabilities) faced in the time domain. This framework is flexible, computationally efficient, and produces solar-like power spectrum and cross-covariance that agree reasonably with observations, including the high-frequency continuous spectrum. Additionally, we present accurate travel-time sensitivity kernels for perturbations to the solar medium which hint at the promising potential of this framework in future forward and inversion problems.
View more
Solar Physics Research Integrated Network Group (SPRING) : A Next Generation Ground-based Synoptic Network
Natural Sciences (Astrophysics and Astrononmy)
Sanjay gosain
Date of upload:
09.09.2015
Co-author:
Markus Roth, Frank Hill, Michael Thompson
Abstract:
SPRING is an evolving concept for next generation solar synoptic observations network. It is envisaged that the new network will cater to the needs of (i) Helioseismology community, by providing improved resolution Doppler observations at multiple heights in solar atmosphere, (ii) Space weather research community, by providing full disk vector magnetograms at a cadence of few minutes and in multiple heights in the solar atmosphere, and (iii) Large solar telescopes, such as DKIST and EAST, by providing high resolution fulldisk context imaging in multiple wavelengths. We will present the conceptual designs currently being explored for SPRING.
View more
Modelling the Line-of-Sight Projection and Filtering-Induced Leakage in Time-Distance Helioseismology
Natural Sciences (Astrophysics and Astrononmy)
Vincent Böning
Date of upload:
07.09.2015
Co-author:
Emmanuel Hecht, Markus Roth
Abstract:
In current approaches to time-distance helioseismology, the line-of-sight projection effect on the traveltimes is not fully taken into account. Furthermore, filtering of full-disc data induces leakage due to the projection onto the CCD, which has so far not been accounted for. We develop a theoretical approach to consider these effects when computing sensitivity functions. As the formulas obtained do not seem to give results for spherical Born approximation sensitivity functions in a reasonable computation time, we develop tests to estimate the strength of the effects.
View more
Spherical Born Kernels for Flows in Time-Distance Helioseismology
Natural Sciences (Astrophysics and Astrononmy)
Vincent Böning
Date of upload:
07.09.2015
Co-author:
Markus Roth, Wolfgang Zima, Aaron C. Birch, Laurent Gizon
Abstract:
We extend an existing Born approximation model for calculating the linear sensitivity of helioseismic travel-times to flows from Cartesian to spherical geometry. This development is necessary to use the Born approximation for inferring large-scale flows in the deep solar interior. Two consistency tests show that results for our sensitivity kernels agree with reference values to within a few percent. Consequently, we evaluate the impact of different data analysis filters on the kernels for a meridional travel-distance of 42 degrees. When mainly low-degree modes are used (roughly l < 70), the sensitivity is concentrated in deeper regions and it visually best resembles a ray-path like structure, otherwise the sensitivity is concentrated near the surface. Among the different low-degree filters used, we find the phase-speed filtered kernel to be best localized at depth.
View more
Temporal variations of Solar and Interplanetary conditions for the last 4 decades
Natural Sciences (Physics)
Bogyeong Kim
Date of upload:
05.11.2015
Co-author:
Abstract:
There are many parameters representing the conditions of space environments. Those are modulated in general by Solar Cycle (SC) defined by sunspot number temporal variation. However, all parameters do not have same cyclic features. Thus, we compare the temporal variations of solar, interplanetary, geomagnetic (SIG) parameters with that of open solar magnetic flux from 1976 to 2014 (from Solar Cycle 21 to the increasing phase of Cycle 24) in order to identify the possible relationships. We investigate which component of solar magnetic multipoles best correlates with the SIG parameters. As results, the dynamic pressure of the solar wind is strongly correlated with the solar magnetic dipole flux, which varies in anti-phase with SC. Other solar activity indices such as the sunspot number, total solar irradiance, 10.7cm radio flux, and solar flare occurrence and highly correlated with quadrupole component. The geomagnetic activity represented by Ap index is correlated with higher order multipole components, which show relatively a lagged time variation with SC. Given these results, we suggest that the continuous observation of solar photospheric field and calculating the multipole components of the open solar magnetic field at the source surface may complement forecasting the geomagnetic activity intensity long term trend
View more
Validating Spherical Born Kernels for Meridional Flows
Natural Sciences (Astrophysics and Astrononmy)
Vincent Böning
Date of upload:
07.09.2015
Co-author:
Markus Roth, Jason Jackiewicz
Abstract:
We present the current status of an undergoing validation of a recently developed model for computing spherical Born approximation sensitivity functions for flows. In a first step, power spectra and reference cross-correlations from the model and a simulation of Hartlep et al. (2013) are matched. Some difficulties in obtaining such a match are discussed. In a second step, travel times from the forward model and from the simulation, which includes a standard meridional flow profile, are to be compared. The analysis procedure including the use of phase-speed filters is identical to the one employed in Jackiewicz et al. (2015). Furthermore, we present a novel approach for a fast computation of integrated sensitivity functions which can be used for interpreting rotationally symmetric flows such as differential rotation and meridional flow.
View more
Numerical simulations of magneto-acoustic wave propagation from the upper convection zone into the chromosphere.
Natural Sciences (Astrophysics and Astrononmy)
Christian Nutto
Date of upload:
08.07.2015
Co-author:
O. Steiner, M. Roth
Abstract:
The contribution of acoustic waves to the chromospheric heating is still an open question. To discuss this Issue, it is crucial to understand the propagation of waves from the convection zone, where the waves are excited, into the higher layers of the solar atmosphere. Traveling upwards through the atmosphere the waves interact with the magnetic field that is present in the photosphere and the chromosphere. This specific interaction takes place in the mode conversion zone, where the sound speed equals the Alfvén speed. Using numerical simulations of wave propagation in a realistic solar model atmosphere, we show how dramatically this interaction influences the propagation of magneto-acoustic waves in the solar atmosphere. Our results demonstrate that due to mode conversion the waves are partially refracted back towards the convection zone and are partially transmitted into the chromosphere. Furthermore, we investigate our simulations for observational quantities to infer properties of the photospheric and chromospheric magnetic field.
View more
Interference of geomagnetic storms in ionospheric plasma bubbles over last solar minimum period
Natural Sciences (Physics)
Flavia Coelho Tardelli
Date of upload:
20.10.2015
Co-author:
Abalde, J. R., Tardelli, A., de Abreu, A. J.
Abstract:
Studies presented on the relation Sun-Earth system are of great importance currently. Ionospheric irregularities in the F-region, caused by geomagnetic storms have meanings and adverse effects on the Earth. The recent advancement in technology techniques for monitoring space weather has allowed major contributions to this aspect. The main research of this study was to determine whether there was some geomagnetic storm that interfere with the generation, propagation and durability of plasma bubbles that occurred over a period of solar minimum in two cities in the Brazilian sector, São José dos Campos - SP (23.21°S, 45.86°W; dip latitude 17.6°S), designated SJC, low-latitude region and near to south crest ionospheric equatorial anomaly and Palmas - TO, called PAL (10.28°S, 48.33°W; dip latitude 6.7°S), near to the magnetic equator, located in the geographical South, tropical region and the hemisphere opposite to the magnetic equator. This study was conducted with data analysis of five years (2006-2010) of SJC and four years (2007-2010) of PAL, considering the 24th solar cycle, using all-sky imaging photometer operating with interference filters in OI 630.0 nm emission resulting from dissociative recombination process that occurs at an altitude of ~ 250-300 km (F-region).
View more
12Last ›

There are no papers within this category so far.

Sort
View
Max
Min
End date
Youngest
Oldest
Alphabetical
A-Z
Z-A
Copyright © 2019 Science Media. All rights reserved.
File upload
Please wait, while we are uploading (progress bar) and processing the file(s). The processing of the files may take some additional minutes...

abc

Abc