My account
Information
Mahendra Kumar Trivedi
Trivedi Global Inc.
Position
Independent Researcher
Department
Field of research
Natural Sciences ()
Email
mahendra@trivedisrl.com
My OpenAccess portfolio

There are no uploaded videos yet.

There are no uploaded posters yet.

img
Physical and Structural Characterization of Biofield Energy Treated Carbazole
Natural Sciences (Analytical Chemistry, Method Development (Chemistr)
596 views
Date of upload:
13.10.2016
Co-author:
Snehasis Jana, Alice Branton, Dahryn Trivedi, Gopal Nayak, Gunin Saikia
Abstract:
Carbazole is a class of phytochemical associated with cancer prevention. It attracted a significant interest in recent time for their usefulness in synthetic heterocyclic chemistry, analytical chemistry and pharmacology. The aim of the study was to evaluate the impact of biofield energy treatment on carbazole by various analytical methods. The study was performed in two groups i.e. control and treatment. The treatment group was subjected to Mr. Trivedi’s biofield treatment. Subsequently, both the samples were characterized with respect to physical and structural properties using X-ray diffraction (XRD), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), Fourier transform infrared (FT-IR), gas chromatography-mass spectrometry (GC-MS), laser particle size analyzer, and surface area analyzer. The XRD study revealed that the crystallite size of treated carbazole was decreased significantly with 37.5% as compared to the control. In addition, the intensity of XRD peaks was slightly decreased as compared to the control. The latent heat of fusion (ΔH) of treated carbazole was substantially increased by 253.6% as compared to the control. Maximum degradation temperature (Tmax) of treated carbazole was increased by 41.46°C as compared to the control (211.93°C to 253.39°C). FT-IR spectra showed similar stretching frequencies in both control and treated carbazole samples. GC-MS data revealed that isotopic abundance ratio of either 13C/12C or 15N/14N or 2H/1H (PM+1/PM) of treated carbazole was significantly increased up to 278.59%. Particle size analysis showed substantial decrease in average particle size (d50) and d90 of the treated carbazole by 25.24% and 4.31%, respectively as compared to the control. The surface area analysis exhibited an increase in the surface area of treated sample by 4.8% as compared to the control. Overall, the experimental results suggest that biofield energy treatment has significant effect on physical, spectral and thermal properties of carbazole.
img
Effect of Biofield Treatment on Antimicrobials Susceptibility Pattern of Acinetobacter baumannii - An Experimental Study
Natural Sciences (Biology)
532 views
Date of upload:
13.10.2016
Co-author:
Shrikant Patil, Harish Shettigar, Mayank Gangwar, Snehasis Jana
Abstract:
Global emergence of Acinetobacter baumannii (A. baumannii) displays a mechanism of resistance to all existing antimicrobials. Objective of this study was to investigate the effect of biofield treatment on antimicrobial sensitivity pattern, minimum inhibitory concentration (MIC), biochemical reactions and biotype number of A. baumannii. A. baumannii cells were procured from MicroBioLogics in sealed packs bearing the American Type Culture Collection (ATCC 19606) number and stored according to the recommended storage protocols until needed for experiments. Two sets of ATCC samples were taken in this experiment and denoted as A and B. ATCC-A sample was revived and divided into two parts i.e. Gr.I (control) and Gr.II (revived) analyzed on day 5 and 10, respectively; likewise, ATCC-B was labeled as Gr.III (lyophilized) and was assessed on day 10. Gr.II and III were treated with Mr. Trivedi’s biofield and were analyzed for its antimicrobial sensitivity, MIC value, biochemical reactions and biotype number with respect to control. Experimental results showed the impact of biofield treatment directly onto the revived and lyophilized form of A. baumannii and found alteration both in qualitative and quantitative aspect as compared with untreated groups. These results showed altered sensitivity pattern of antimicrobials in biofield treated group as compared to control. Apart from altered MIC values, changes were also observed in biotype number of revived treated group as compared to control. These findings suggest that biofield treatment can prevent the emergence of absolute resistance of existing antimicrobials to A. Baumannii.
img
Antimicrobial Susceptibility of Proteus mirabilis: Impact of Biofield Energy Treatment
Natural Sciences (Biology)
749 views
Date of upload:
13.10.2016
Co-author:
Alice Branton, Dahryn Trivedi, Gopal Nayak, Sambhu Charan Mondal, Snehasis Jana
Abstract:
Proteus mirabilis (P. mirabilis) is widespread in nature, mainly found in soil, water, and the flora of human gastrointestinal tract. The current study was attempted to investigate the effects of Mr. Trivedi’s biofield energy treatment on P. mirabilis both in lyophilized as well as revived state for antimicrobial susceptibility, biochemical characteristics, and biotype. P. mirabilis cells were procured from MicroBioLogics Inc., USA, in a sealed pack bearing the American Type Culture Collection (ATCC 25933) number and stored according to the recommended storage protocol until needed for experiments. Two sets of ATCC samples were taken in this experiment and denoted as A and B. The ATCC A sample was revived and divided into two parts Gr.I (control) and Gr.II (revived); likewise, the ATCC B was labeled as Gr.III (lyophilized). Group II and III were given with biofield treatment. All experimental parameters were studied using automated MicroScan Walk-Away® system. The result of antimicrobial susceptibility and minimum inhibitory concentration showed 6.67% and 9.38% alteration, respectively in treated cells of P. mirabilis as compared to the control. In addition, the overall biochemical reactions were significantly altered (42.42%) in the treated groups with respect to the control. Moreover, biotype number was changed in the treated cells, Gr. II, day 5 (40061546) and day 10 (77365764), while without alteration of organism as compared to the control (40061544; Proteus mirabilis). The results suggested that biofield treatment has an impact on P. mirabilis in revived state predominately.
img
Impact of an external energy on Staphylococcus epidermis [ATCC –13518] in relation to antibiotic susceptibility and biochemical reactions
Natural Sciences (Biology)
564 views
Date of upload:
14.10.2016
Co-author:
Shrikant Patil
Abstract:
Purpose While spiritual and mental energies are known to man, their impact has never been scientifically measurable in the material world and they remain outside the domain of science. The present experiment on Staphylococcus epidermis [ATCC –13518], validate the effects of such energy transmitted through a person, Mr. Mahendrakumar Trivedi, which has produced an impact measurable in scientifically rigorous manner. Methods Staphylococcus epidermis strains in revived and lyophilized state were subjected to spiritual energy transmitted through thought intervention and/or physical touch of Mr. Trivedi to the sealed tubes containing strain, the process taking about 3 minutes and were analyzed within 10 days after incubation. All tests were performed with the help of automation on the Microscan Walkaway System in Microbiology Laboratory - accredited by The College of American Pathologists. Results The results indicated that Mr.Trivedi’s energy has changed 7 of 27 biochemical characteristics of Staphylococcus epidermis along with significant changes in susceptibility pattern in 8 of 29 antibiotics. The Biotype number has changed from the original control strain giving rise to 2 different biotypes in treated samples while the external energy /treatment given was the same for all treated samples suggestive of random polymorphism as analyzed through the automated machine. Conclusions These results cannot be explained by current theories of science, and indicate a potency in Mr.Trivedi’s energy, providing a model for science to be able to investigate the impact of spiritual energy in a rigorous manner. In lyophilized state, biochemical and enzymatic characteristics could be altered.

There are no uploaded presentations yet.

There are no uploaded conferences yet.