My account
Information
Alice Branton
Trivedi Global Inc.
Position
CEO
Department
Field of research
Natural Sciences ()
Email
alice@trivedisrl.com
My OpenAccess portfolio

There are no uploaded videos yet.

There are no uploaded posters yet.

img
Evaluation of Isotopic Abundance Ratio in Naphthalene Derivatives After Biofield Energy Treatment Using Gas Chromatography-Mass Spectrometry
Natural Sciences (Analytical Chemistry, Method Development (Chemistr)
569 views
Date of upload:
15.12.2016
Co-author:
Mahendra Kumar Trivedi, Dahryn Trivedi, Gopal Nayak, Gunin Saikia, Snehasis Jana
Abstract:
Naphthalene and 2-naphthol are two naphthalene derivatives, which play important roles in the chemical and pharmaceutical industries. The aim of this study was to evaluate the impact of biofield energy treatment on the isotopic abundance of 13C/12C or 2H/1H and 18O/16O in naphthalene and 2-naphthol using gas chromatography-mass spectrometry (GC-MS). Naphthalene and 2-naphthol samples were divided into two parts: control and treated. The control group remained as untreated, while the treated group was subjected to Mr. Trivedi’s biofield energy treatment. The treated samples were subdivided into four parts named as T1, T2, T3 and T4. Control and treated samples were characterized using GC-MS. The GC-MS data revealed that the isotopic abundance ratio of 13C/12C or 2H/1H, (PM+1)/PM and 18O/16O, (PM+2)/PM were increased significantly in treated naphthalene and 2-naphthol (where PM-primary molecule, (PM+1) isotopic molecule either for 13C or 2H and (PM+2) is the isotopic molecule for 18O). The isotopic abundance ratio of (PM+1)/PM in the treated T2 samples of naphthalene and 2-naphthol was increased up to 129.40% and 165.40%, respectively as compared to their respective control. However, the isotopic abundance ratio of (PM+1)/PM in the treated T1, T3 and T4 samples of naphthalene was decreased by 44.41%, 33.49% and 30.3%, respectively as compared to their respective control. While in case of 2-naphthol, the isotopic abundance ratio of (PM+1)/PM was decreased by 39.57% in T1 sample and then gradually increased up to 9.85% from T3 to T4 samples. The isotopic abundance ratio of (PM+2)/PM in treated T2 sample of 2-naphthol was increased up to 163.24%, whereas this value was decreased by 39.57% in treated T1 sample. The GC-MS data suggest that the biofield energy treatment has significantly altered the isotopic abundance of 2H, 13C in naphthalene and 2H, 13C and 18O in 2-naphthol as compared to the control.
img
Antibiogram, Biochemical Reactions, and Genotypic Pattern of Biofield Treated Pseudomonas aeruginosa
Natural Sciences (Biology)
621 views
Date of upload:
15.12.2016
Co-author:
Mahendra Kumar Trivedi, Dahryn Trivedi, Gopal Nayak, Mayank Gangwar, Snehasis Jana
Abstract:
Introduction: Complementary and alternative medicine such as biofield energy therapies are highly popular in biomedical health care. The study evaluates the impact of Mr. Trivedi’s biofield energy treatment on Pseudomonas aeruginosa (P. aeruginosa) to evaluate its phenotypic and genotypic characteristics. Methods: P. aeruginosa ATCC 10145 (American Type Culture Collection) was procured from Bangalore Genei, in sealed pack and divided into control and treated groups. Treated group was subjected to biofield treatment and analyzed for antibiogram, biochemical reactions, and biotype number using automated MicroScan Walk-Away® system on day 10. The treated sample was evaluated for DNA polymorphism by Random Amplified Polymorphic DNA (RAPD) and 16S rDNA sequencing to establish the phylogenetic relationship, the epidemiological relatedness and genetic characteristics. Results: Data showed altered sensitivity pattern in antibiotic cefotaxime from intermediate to decreased β-lactamases activity, with four-fold decreased minimum inhibitory concentration (MIC), i.e. 32 to ≤8 µg/mL as compared to control. Similarly, cefotetan and extended-spectrum-β-lactamases (ESBL-b Scrn) showed decrease in MIC values as compared to the control group. Nitrate reported for negative biochemical reaction i.e. positive (+) to negative (-) after biofield treatment on P. aeruginosa. The biotyping showed a change in biotype number (02063722) as compared to the control (02063726), without altering the microorganism. RAPD analysis showed an average range of 30 to 50% of polymorphism, while 16S rDNA sequencing analyzed treated sample as Pseudomonas aeruginosa (GenBank Accession Number: EU090892) with 99% identity of gene sequencing data. Conclusion: These results suggest that Mr. Trivedi’s unique biofield energy treatment on P. aeruginosa has an impact to alter the antimicrobial sensitivity pattern and MIC values, thus it can be used as an alternate integrative approach of energy medicine in near future.
img
Characterization of Physical, Thermal and Spectroscopic Properties of Biofield Treated Ortho-Toluic Acid
Natural Sciences (Analytical Chemistry, Method Development (Chemistr)
579 views
Date of upload:
15.12.2016
Co-author:
Mahendra Kumar Trivedi, Dahryn Trivedi, Gopal Nayak, Ragini Singh, Snehasis Jana
Abstract:
Toluic acid isomers are widely used as a chemical intermediate in manufacturing of dyes, pharmaceuticals, polymer stabilizers, insect repellent and other organic synthesis. The aim of present study was to evaluate the impact of biofield treatment on physical, thermal and spectroscopic properties of ortho isomer of toluic acid (OTA). The OTA sample was divided into two groups, served as control and treated. The treated group received Mr. Trivedi’s biofield treatment. Subsequently, the control and treated samples were evaluated using X-ray diffraction (XRD), differential scanning calorimetry (DSC), thermogravimetric analysis/ derivative thermogravimetry (TGA/DTG), Fourier transform infrared (FT-IR) and ultraviolet-visible (UV-Vis) spectroscopy. XRD result showed 26.66% decrease in crystallite size in treated OTA sample as compared to control. Furthermore, DSC analysis result showed that latent heat of fusion was considerably reduced by 6.68% in treated OTA sample as compared to control. However, an increase in melting point was observed in treated sample. The melting point of treated OTA sample was found to be 107.96°C as compared to control (105.47°C) sample. Moreover, TGA/DTG studies showed that Tmax (temperature, at which sample lost its maximum weight) was decreased by 1.21% in treated OTA sample as compared to control. It indicates that vaporisation of treated OTA sample might increase as compared to control. The FT-IR and UV-Vis spectra did not show any significant changes in spectral properties of treated OTA sample as compared to control. These findings suggest that biofield treatment has significantly altered the physical and thermal properties of OTA, which could make it more useful as chemical intermediate.
img
In Vitro Evaluation of Antifungal Sensitivity Assay of Biofield Energy Treated Fungi
Natural Sciences (Biology)
739 views
Date of upload:
15.12.2016
Co-author:
Mahendra Kumar Trivedi, Dahryn Trivedi, Gopal Nayak, Khemraj Bairwa, Snehasis Jana
Abstract:
Fungi are the group of eukaryotic organisms such as yeast, mold, and mushrooms. The present work investigated the impact of biofield treatment on different pathogenic species of fungi in relation to antifungal sensitivity pattern. Each fungal sample was divided into three parts: C, control; T1, treatment (revived); T2 treatment (lyophilized). Treatment groups received the biofield treatment, and control group was remained as untreated. Mini-API ID32C strip employed for evaluation of antifungal sensitivity and minimum inhibitory concentration (MIC). The results showed that sensitivity of Candida albicans in T1 cells was changed against itraconazole from intermediate (I) to resistance (R) on day 10. The Candida kefyr exhibited a change in susceptibility against itraconazole in T2 cell from S→I, on day 10. Likewise, Candida krusei showed the alterations in sensitivity against two antifungal drugs: fluconazole from S→I (T1 on day 10) and itraconazole S→I (T1 and T2 on all assessment days). The Cryptococcus neoformans changed from S→I in T1 cell on day 5 and 10, against itraconazole. Sensitivity of Candida tropicalis was also altered from I→R against flucytosine (T1 and T2, on all assessment days). Similarly, Saccharomyces cerevisae altered from S→I (T1) and S→R (T2) on day 10. The MIC values of antifungal drugs were altered in the range of 2-8 folds, as compared to the control. Fungal identification data showed the significant changes in species similarity of few tested fungi as C. albicans changed from 91.9% to 98.5 and 99.9% in T1 and T2 cells, respectively on day 10. C. krusei was changed from 97.9% to 85.9% (T2 day 10), and C. tropicalis was altered from 88.7% to 99.6% (T1 day 5) and 99.0% (T2). These findings suggest that biofield treatment could be applied to alter the susceptibility pattern of antifungal drug therapy in future.

There are no uploaded presentations yet.

There are no uploaded conferences yet.