My account
Information
Alice Branton
Trivedi Global Inc.
Position
CEO
Department
Field of research
Natural Sciences ()
Email
alice@trivedisrl.com
My OpenAccess portfolio

There are no uploaded videos yet.

There are no uploaded posters yet.

img
Physical, Thermal and Spectroscopic Characterization of m-Toluic Acid: an Impact of Biofield Treatment
Natural Sciences (Analytical Chemistry, Method Development (Chemistr)
494 views
Date of upload:
23.12.2016
Co-author:
Mahendra Kumar Trivedi, Dahryn Trivedi, Gopal Nayak, Ragini Singh, Snehasis Jana
Abstract:
m-toluic acid (MTA) is widely used in manufacturing of dyes, pharmaceuticals, polymer stabilizers, and insect repellents. The aim of present study was to evaluate the impact of biofield treatment on physical, thermal and spectroscopic properties of MTA. MTA sample was divided into two groups that served as treated and control. The treated group received Mr. Trivedi’s biofield treatment. Subsequently, the control and treated samples were evaluated using X-ray diffraction (XRD), surface area analyser, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), Fourier transform infrared (FT-IR) and ultraviolet-visible (UV-Vis) spectroscopy. XRD result showed a decrease in crystallite size in treated samples i.e. 42.86% in MTA along with the increase in peak intensity as compared to control. However, surface area analysis showed an increase in surface area of 107.14% in treated MTA sample as compared to control. Furthermore, DSC analysis results showed that the latent heat of fusion was considerably reduced by 40.32%, whereas, the melting temperature was increased (2.23%) in treated MTA sample as compared to control. The melting point of treated MTA was found to be 116.04°C as compared to control (113.51°C) sample. Moreover, TGA/DTG studies showed that the control sample lost 56.25% of its weight, whereas, in treated MTA, it was found 58.60%. Also, Tmax (temperature, at which sample lost maximum of its weight) was decreased by 1.97% in treated MTA sample as compared to control. It indicates that the vaporisation temperature of treated MTA sample might decrease as compared to control. The FT-IR and UV-Vis spectra did not show any significant change in spectral properties of treated MTA sample as compared to control. These findings suggest that biofield treatment has significantly altered the physical and thermal properties of m-toluic acid, which could make them more useful as a chemical intermediate.
img
Antibiogram Typing and Biochemical Characterization of Klebsiella pneumoniae after Biofield Treatment
Natural Sciences (Biology)
547 views
Date of upload:
23.12.2016
Co-author:
Mahendra Kumar Trivedi, Dahryn Trivedi, Harish Shettigar, Mayank Gangwar, Snehasis Jana
Abstract:
Klebsiella pneumoniae (K. pneumoniae) is a common nosocomial pathogen causing respiratory tract (pneumoniae) and blood stream infections. Multidrug-resistant (MDR) isolates of K. pneumoniae infections are difficult to treat in patients in health care settings. Aim of the present study was to determine the impact of Mr. Trivedi’s biofield treatment on four MDR clinical lab isolates (LS) of K. pneumoniae (LS 2, LS 6, LS 7, and LS 14). Samples were divided into two groups i.e. control and biofield treated. Control and treated groups were analyzed for antimicrobial susceptibility pattern, minimum inhibitory concentration (MIC), biochemical study and biotype number using MicroScan Walk-Away® system. The analysis was done on day 10 after biofield treatment as compared with control group. Antimicrobial sensitivity assay showed that there was 46.42% alteration in sensitivity of tested antimicrobials in treated group of MDR K. pneumonia isolates. MIC results showed an alteration in 30% of tested antimicrobials out of thirty after biofield treatment in clinical isolates of K. pneumoniae. An increase in antimicrobial sensitivity and decrease in MIC value was reported (in LS 6) in case of piperacillin/tazobactam and piperacillin. Biochemical study showed a 15.15% change in biochemical reactions as compared to control. A significant change in biotype numbers were reported in all four clinical isolates of MDR K. pneumoniae after biofield treatment as compared to control group. On the basis of changed biotype number after biofield treatment, new organism was identified as Enterobacter aerogenes in LS 2 and LS 14. These results suggest that biofield treatment has a significant effect on altering the antimicrobial sensitivity, MIC values, biochemical reactions and biotype number of multidrug-resistant isolates of K. Pneumoniae.
img
Spectroscopic Characterization of Disodium Hydrogen Orthophosphate and Sodium Nitrate after Biofield Treatment
Natural Sciences (Analytical Chemistry, Method Development (Chemistr)
455 views
Date of upload:
23.12.2016
Co-author:
Mahendra Kumar Trivedi, Dahryn Trivedi, Gopal Nayak, Khemraj Bairwa, Snehasis Jana
Abstract:
Disodium hydrogen orthophosphate is a water soluble white powder widely used as pH regulator and saline laxative. The sodium nitrate is a highly water soluble white solid, used in high blood pressure, dentinal hypersensitivity, and production of fertilizers. The present study was aimed to investigate the impact of biofield treatment on spectral properties of disodium hydrogen orthophosphate and sodium nitrate. The study was performed in two groups i.e., control and treatment of each compound. The treatment groups were subjected to Mr. Trivedi’s biofield treatment. The spectral properties of control and treated groups of both compounds were studied using Fourier transform infrared (FT-IR) and Ultraviolet-Visible (UV-Vis) spectroscopic techniques. FT-IR spectrum of biofield treated disodium hydrogen orthophosphate showed the shifting in wavenumber of vibrational peaks (with respect to control) corresponding to O-H stretching from 2975 to 3357 cm-1, PO-H symmetrical stretching from 2359 to 2350 cm-1, O=P-OH deformation from 1717-1796 cm-1 to 1701-1735 cm-1, P=O asymmetric stretching from 1356 to 1260 cm-1 and P=O symmetric stretching from 1159 to 1132 cm-1, etc. Likewise, the FT-IR spectrum of sodium nitrate exhibited the shifting of vibrational frequency of N=O stretching from 1788 to 1648 cm-1 and NO3 asymmetric and symmetric stretchings from 1369 to 1381 cm-1 and 1340 to 1267 cm-1. UV spectrum of treated disodium hydrogen orthophosphate revealed a negative absorbance; it may be due to decrease in UV absorbance as compared to control. UV spectrum of control sodium nitrate exhibited two absorbance maxima (λmax) at 239.4 nm and 341.4 nm, which were altered to one absorbance maxima (λmax) at 209.2 nm after biofield treatment. Overall, the FT-IR and UV spectroscopic data of both compounds suggest an impact of biofield treatment on spectral properties with respect to force constant, bond strength, dipole moments and transition energy between two orbitals (ground state and excited state) as compared to respective control.
img
Fourier Transform Infrared & Ultraviolet-Visible Spectroscopic Characterization of Ammonium Acetate & Ammonium Chloride: Impact of Biofield Treament
Natural Sciences (Analytical Chemistry, Method Development (Chemistr)
520 views
Date of upload:
23.12.2016
Co-author:
Mahendra Kumar Trivedi, Dahryn Trivedi, Gopal Nayak, Khemraj Bairwa, Snehasis Jana
Abstract:
Ammonium acetate and ammonium chloride are the white crystalline solid inorganic compounds having wide application in synthesis and analytical chemistry. The aim of present study was to evaluate the impact of biofield treatment on spectral properties of inorganic salt like ammonium acetate and ammonium chloride. The study was performed in two groups of each compound i.e., control and treatment. Treatment groups were received Mr. Trivedi’s biofield treatment. Subsequently, control and treated groups were evaluated using Fourier Transform Infrared (FT-IR) and Ultraviolet-Visible (UV-Vis) spectroscopy. FT-IR spectrum of treated ammonium acetate showed the shifting in wavenumber of vibrational peaks with respect to control. Like, the N-H stretching was shifted from 3024-3586 cm-1 to 3033-3606 cm-1, C-H stretching from 2826-2893 cm-1 to 2817-2881 cm-1, C=O asymmetrical stretching from 1660-1702 cm-1 to 1680-1714 cm-1, N-H bending from 1533-1563 cm-1 to 1506-1556 cm-1 etc. Treated ammonium chloride showed the shifting in IR frequency of three distinct oscillation modes in NH4 ion i.e., at ν1, 3010 cm-1 to 3029 cm-1; ν2, 1724 cm-1 to 1741 cm-1; and ν3, 3156 cm-1 to 3124 cm-1. The N-Cl stretching was also shifted to downstream region i.e., from 710 cm-1 to 665 cm-1 in treated ammonium chloride. UV spectrum of treated ammonium acetate showed the absorbance maxima (λmax) at 258.0 nm that was shifted to 221.4 nm in treated sample. UV spectrum of control ammonium chloride exhibited two absorbance maxima (λmax) i.e., at 234.6 and 292.6 nm, which were shifted to 224.1 and 302.8 nm, respectively in treated sample. Overall, FT-IR and UV data of both compounds suggest an impact of biofield treatment on atomic level i.e., at force constant, bond strength, dipole moments and electron transition energy between two orbitals of treated compounds as compared to respective control.

There are no uploaded presentations yet.

There are no uploaded conferences yet.