My account
Information
Gopal Nayak
Calcutta University
Position
Researcher
Department
Field of research
Natural Sciences (Biology)
Email
gopal@trivedisrl.com
My OpenAccess portfolio

There are no uploaded videos yet.

There are no uploaded posters yet.

img
Characterization of Biofield Energy Treated 3-Chloronitrobenzene: Physical, Thermal, and Spectroscopic Studies
Natural Sciences (Analytical Chemistry, Method Development (Chemistr)
488 views
Date of upload:
25.11.2016
Co-author:
Mahendra Kumar Trivedi, Alice Branton, Dahryn Trivedi, Ragini Singh, Snehasis Jana
Abstract:
The chloronitrobenzenes are widely used as the intermediates in the production of pharmaceuticals, pesticides and rubber processing chemicals. However, due to their wide applications, they are frequently released into the environment thereby creating hazards. The objective of the study was to use an alternative strategy i.e. biofield energy treatment and analysed its impact on the physical, thermal and spectral properties of 3-chloronitrobenzene (3-CNB). For the study, the 3-CNB sample was taken and divided into two groups, named as control and treated. The analytical techniques used were X-ray diffraction (XRD), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), UV-Visible (UV-Vis), and Fourier transform infrared (FT-IR) spectroscopy. The treated group was subjected to the biofield energy treatment and analysed using these techniques against the control sample. The XRD data showed an alteration in relative intensity of the peak along with 30% decrease in the crystallite size of the treated sample as compared to the control. The TGA studies revealed the decrease in onset temperature of degradation from 140ºC (control) to 120°C, while maximum thermal degradation temperature was changed from 157.61ºC (control) to 150.37ºC in the treated sample as compared to the control. Moreover, the DSC studies revealed the decrease in the melting temperature from 51°C (control) →47°C in the treated sample. Besides, the UV-Vis and FT-IR spectra of the treated sample did not show any significant alteration in terms of wavelength and frequencies of the peaks, respectively from the control sample. The overall study results showed the impact of biofield energy treatment on the physical and thermal properties of 3-CNB that can further affect its use as a chemical intermediate and its fate in the environment.
img
Physicochemical and Spectroscopic Characterization of p-Chlorobenzaldehyde: An Impact of Biofield Energy Treatment
Natural Sciences (Analytical Chemistry, Method Development (Chemistr)
625 views
Date of upload:
25.11.2016
Co-author:
Mahendra Kumar Trivedi, Alice Branton, Dahryn Trivedi, Khemraj Bairwa, Snehasis Jana
Abstract:
p-Chlorobenzaldehyde (p-CBA) is used as an important chemical intermediate for the preparation of pharmaceuticals, agricultural chemicals, dyestuffs, optical brighteners, and metal finishing products. The study aimed to evaluate the effect of biofield energy treatment on the physicochemical and spectroscopic properties of p-CBA. The study was accomplished in two groups i.e. control and treated. The control group was remained as untreated, while the treated group was subjected to Mr. Trivedi’s biofield energy treatment. Finally, both the samples (control and treated) were evaluated using various analytical techniques. The surface area analysis showed a substantial increase in the surface area by 23.06% after biofield treatment with respect to the control sample. The XRD analysis showed the crystalline nature of both control and treated samples. The X-ray diffractogram showed the significant alteration in the peak intensity in treated sample as compared to the control. The XRD analysis showed the slight increase (2.31%) in the crystallite size of treated sample as compared to the control. The TGA analysis exhibited the decrease (10%) in onset temperature of thermal degradation form 140°C (control) to 126°C in treated sample. The Tmax (maximum thermal degradation temperature) was slightly decreased (2.14%) from 157.09°C (control) to 153.73°C in treated sample of p-CBA. This decrease in Tmax was possibly due to early phase of vaporization in treated sample as compared to the control. The FT-IR spectrum of treated p-CBA showed the increase in wavenumber of C=C stretching as compared to the control. The UV spectroscopic study showed the similar pattern of wavelength in control and treated samples. Altogether, the surface area, XRD, TGA-DTG and FT-IR analysis suggest that Mr. Trivedi’s biofield energy treatment has the impact to alter the physicochemical properties of p-CBA. This treated p-CBA could be utilized as a better chemical intermediate than the control p-CBA for the synthesis of pharmaceutical drugs and organic chemicals.
img
Evaluation of Biofield Treatment on Atomic and Thermal Properties of Ethanol
Natural Sciences (Analytical Chemistry, Method Development (Chemistr)
490 views
Date of upload:
25.11.2016
Co-author:
Mahendra Kumar Trivedi, Alice Branton, Dahryn Trivedi, Omprakash Latiyal, Snehasis Jana
Abstract:
Ethanol is a polar organic solvent, and frequently used as a fuel in automobile industries, principally as an additive with gasoline due to its higher octane rating. It is generally produced from biomass such as corn, sugar and some other agriculture products. In the present study, impact of biofield treatment on ethanol was evaluated with respect to its atomic and thermal properties. The ethanol sample was divided into two parts i.e., control and treatment. Control part was remained untreated. Treatment part was subjected to Mr. Trivedi’s biofield treatment. Control and treated samples were characterized using Gas chromatography-mass Spectrometry (GC-MS), Differential scanning calorimetry (DSC), and High performance liquid chromatography (HPLC). GC-MS data revealed that isotopic abundance of 13C i.e., δ13C of treated ethanol was significantly changed from -199‰ upto 155‰ as compared to control. The DSC data exhibited that the latent heat of vaporization of treated ethanol was increased by 94.24% as compared to control, while no significant change was found in boiling point. Besides, HPLC data showed that retention time was 2.65 minutes in control, was increased to 2.76 minutes in treated ethanol sample. Thus, overall data suggest that biofield treatment has altered the atomic and thermal properties of ethanol.
img
Characterisation of Physical, Spectral and Thermal Properties of Biofield treated Resorcinol
Natural Sciences (Analytical Chemistry, Method Development (Chemistr)
458 views
Date of upload:
25.11.2016
Co-author:
Mahendra Kumar Trivedi, Alice Branton, Dahryn Trivedi, Ragini Singh, Snehasis Jana
Abstract:
Resorcinol is widely used in manufacturing of several drugs and pharmaceutical products that are mainly used for topical ailments. The main objective of this study is to use an alternative strategy i.e., biofield treatment to alter the physical, spectral and thermal properties of resorcinol. The resorcinol sample was divided in two groups, which served as control and treated group. The treated group was given biofield treatment and both groups i.e., control and treated were analysed using X-ray diffraction (XRD), Fourier transform-infrared (FT-IR) spectroscopy, UV-Visible (UV-Vis) spectroscopy, Differential scanning calorimetry (DSC) and Thermogravimetric analysis (TGA). The results showed a significant decrease in crystallite size of treated sample i.e., 104.7 nm as compared to control (139.6 nm). The FT-IR and UV-Vis spectra of treated sample did not show any change with respect to control. Besides, thermal analysis data showed 42% decrease in latent heat of fusion. The onset temperature of volatilization and temperature at which maximum volatilization happened was also decreased by 16% and 12.86%, respectively. The significant decrease in crystallite size may help to improve the spreadability and hence bioavailability of resorcinol in topical formulations. Also increase in volatilization temperature might increase the rate of reaction of resorcinol when used as intermediate. Hence, biofield treatment may alter the physical and thermal properties of resorcinol and make it more suitable for use in pharmaceutical industry.

There are no uploaded presentations yet.

There are no uploaded conferences yet.