My account
Information
Gopal Nayak
Calcutta University
Position
Researcher
Department
Field of research
Natural Sciences (Biology)
Email
gopal@trivedisrl.com
My OpenAccess portfolio

There are no uploaded videos yet.

There are no uploaded posters yet.

img
Physicochemical and Spectroscopic Characterization of Yeast Extract Powder After the Biofield Energy Treatment
Natural Sciences (Biology)
525 views
Date of upload:
21.12.2016
Co-author:
Mahendra Kumar Trivedi, Alice Branton, Dahryn Trivedi, Khemraj Bairwa, Snehasis Jana
Abstract:
Yeast extract powder (YE powder) is particularly used in culture media for the cultivation of microorganisms found in milk or other dairy products. The present study was intended to explore the influence of biofield energy treatment on the physicochemical and spectral properties of YE powder. The study was accomplished in two groups; first group was remained as control, while another was subjected to Mr. Trivedi’s biofield energy treatment and termed as the treated group. Afterward, both the samples were evaluated using several analytical techniques. The X-ray diffractometry (XRD) study showed the halo patterns of XRD peaks in both the samples. This indicated the amorphous nature of the samples. The particle size study revealed the 4.77% and 26.28% increase d50 (in the average particle size) and d99 (particle size below that 99% particles are present), respectively of treated YE powder with respect to the control. The surface area analysis showed the 14.06% increase in the specific surface area of treated sample with respect to the control. The differential scanning calorimetry (DSC) analysis exhibited the 41.64% increase in the melting temperature of treated YE powder sample as compared to the control. The TGA/DTG analysis exhibited the increase in Tonset (onset temperature of thermal degradation) by 7.51% and 12.45% in first and second step of thermal degradation, respectively in the treated sample as compared to the control. Furthermore, the Tmax (maximum thermal degradation temperature) was increased by 4.16% and 24.79% in first and second step of thermal degradation, respectively in the treated sample with respect to the control. The Fourier transform infrared (FT-IR) study revealed the changes in the wavenumber of functional groups such as C-H (stretching) from 2895→2883 cm-1 and 2815→2831 cm-1, respectively; C-N from 1230→1242 cm-1; and C-O stretching from 1062-1147 cm-1→1072-1149 cm-1 of treated YE powder sample as compared to the control. The UV-vis spectroscopy showed the similar patterns of absorbance maxima (λmax) in both the control and treated samples. Therefore, the analytical results suggested the considerable impact of Mr. Trivedi’s biofield energy treatment on physicochemical and spectral properties of YE powder. The increase in Tonset and Tmax after the biofield treatment suggests that the treated YE powder might be more effective in culture medium than the control YE powder.
img
Comparative Physicochemical Evaluation of Biofield Treated Phosphate Buffer Saline and Hanks Balanced Salt Medium
Natural Sciences (Biology)
554 views
Date of upload:
21.12.2016
Co-author:
Mahendra Kumar Trivedi, Alice Branton, Dahryn Trivedi, Rakesh Kumar Mishra, Snehasis Jana
Abstract:
Phosphate buffer saline (PBS) has numerous biological and pharmaceutical applications. Hank buffer salt (HBS) has been used as a medium for tissue culture applications. This research study was aimed to investigate the influence of Mr. Trivedi’s biofield energy treatment on physicochemical properties of the PBS and HBS. The study was executed in two group’s i.e. control and treated. The control group was kept aside as control and treated group had received the biofield energy treatment. The control and treated samples were further characterized by X-ray diffraction (XRD), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and Fourier transform infrared (FT-IR) spectroscopy. The XRD analysis indicated the increase in crystallite size by 5.20% in treated PBS as compared to the control. Similarly, the treated HBS also showed increase in crystallite size by 3.20% with respect to the control. Additionally, the treated PBS showed an increase in Bragg’s angle (2θ) as compared to the control sample. However, a decrease in Bragg’s angle of XRD peaks of the treated sample was noticed in the treated HBS. The DSC analysis of the control PBS showed melting temperature at 224.84°C; however melting temperature was not observed in the treated sample. However, DSC analysis of the treated HBS showed an increase in melting temperature (152.83°C) in comparison with the control (150.60°C). Additionally, the latent heat of fusion of the treated HBS was increased substantially by 108.83% as compared to the control. The TGA thermogram of the treated PBS showed an increase in onset of thermal degradation (212°C) as compared to the control (199°C). Whereas, the treated HBS showed less weight loss comparing with the control sample. This indicated the increase in thermal stability of the both the treated PBS and HBS samples. The FT-IR spectroscopic analysis of treated PBS showed alterations in the frequency of the functional groups such as O-H, C-H, P=O, O=P-OH, and P-OH as compared to the control. Additionally, the FT-IR spectrum of the treated HBS showed increase in frequency of calcium chloride phase (1444→1448 cm-1) as compared to the control sample. Altogether, it was observed that biofield energy treatment had caused physical, thermal and spectral changes in the treated samples as compared to the control. It is assumed that biofield energy treated PBS and HBS could be a good prospect for biological and tissue culture applications.
img
Morphological Characterization, Quality, Yield and DNA Fingerprinting of Biofield Energy Treated Alphonso Mango (Mangifera indica L.)
Natural Sciences (Biology)
535 views
Date of upload:
21.12.2016
Co-author:
Mahendra Kumar Trivedi, Alice Branton, Dahryn Trivedi, Sambhu Charan Mondal, Snehasis Jana
Abstract:
Alphonso is the most delicious variety of mango (Mangifera indica L.) known for its excellent texture, taste, and richness with vitamins and minerals. The present study was attempted to evaluate the impact of Mr. Trivedi’s biofield energy treatment on morphological characteristics, quality, yield and molecular assessment of mango. A plot of 16 acres lands used for this study with already grown mango trees. This plot was divided into two parts. One part was considered as control, while another part was subjected to Mr. Trivedi’s biofield energy treatment without physically touching and referred as treated. The treated mango trees showed new straight leaves, without any distortion and infection, whereas the control trees showed very few, distorted, infected, and curly leaves. Moreover, the flowering pattern of control trees did not alter; it was on average 8 to 10 inches with more male flowers. However, the flowering pattern of treated trees was completely transformed into compact one being 4 to 5 inches in length and having more female flowers. Additionally, the weight of matured ripened mango was found on an average 275 gm, medium sized with 50% lesser pulp in the control fruits, while the fruits of biofield energy treated trees showed on average weight of 400 gm, large sized and having 75% higher pulp as compared to the control. Apart from morphology, the quality and nutritional components of mango fruits such as acidity content was increased by 65.63% in the treated sample. Vitamin C content in the treated Alphonso mango pulp was 43.75% higher than the pulp obtained from the control mango farm. The spongy tissue content in pulp of the matured ripened mangoes was decreased by 100% for two consecutive years as compared to the control. Moreover, the yield of flowers and fruits in the treated trees were increased about 95.45 and 47.37%, respectively as compared to the control. Besides, the DNA fingerprinting data using RAPD revealed that the treated sample did not show any true polymorphism as compared to the control. The overall results envisaged that the biofield energy treatment on the mango trees showed a significant improvement in the morphology, quality and overall productivity along with 100% reduction in the spongy tissue disorder. In conclusion, the biofield energy treatment could be used as an alternative way to increase the production of quality mangoes.
img
Evaluation of Vegetative Growth Parameters in Biofield Treated Bottle Gourd (Lagenaria siceraria) and Okra (Abelmoschus esculentus)
Natural Sciences (Biology)
632 views
Date of upload:
21.12.2016
Co-author:
Mahendra Kumar Trivedi, Alice Branton, Dahryn Trivedi, Mayank Gangwar, Snehasis Jana
Abstract:
The objective of the study was to assess the growth contributing characters of biofield treated bottle gourd (Lagenaria siceraria) and okra (Abelmoschus esculentus) seeds. The seeds of both crops were divided into two groups, one was kept aside and denoted as untreated, while the other group was subjected biofield energy treatment. The variabilities in growth contributing parameters were studied and compared with their control. Further the level of glutathione (GSH) in okra leaves, along with DNA fingerprinting in bottle gourd were analyzed using RAPD method. After germination, the plants of bottle gourd were reported to be strong and erect with better canopy as compared with the control. The vegetative growth of okra plants after biofield energy treatment was found to be stout with small canopy, strong steam, and more fruits per nodes, that contributed high yield as compared with the control. However, endogenous level of GSH in the leaves of okra was increased by 47.65% as compared to the untreated group, which may suggest an improved immunity of okra crops. Besides, the DNA fingerprinting data, showed polymorphism (42%) between treated and untreated samples of bottle gourd. The overall results suggest that the biofield energy treatment on bottle gourd and okra seeds, results an improved overall growth of plant and yield, which may enhance flowering and fruiting per plant. Study results conclude that the biofield energy treatment could be an alternate method to improve the crop yield in agricultural science.

There are no uploaded presentations yet.

There are no uploaded conferences yet.