My account
Information
Alice Branton
Trivedi Global Inc.
Position
CEO
Department
Field of research
Natural Sciences ()
Email
alice@trivedisrl.com
My OpenAccess portfolio

There are no uploaded videos yet.

There are no uploaded posters yet.

img
Phenotyping and Genotyping Characterization of Proteus vulgaris After Biofield Treatment
Natural Sciences (Biology)
521 views
Date of upload:
02.12.2016
Co-author:
Mahendra Kumar Trivedi, Dahryn Trivedi, Gopal Nayak, Sambhu Charan Mondal, Snehasis Jana
Abstract:
Proteus vulgaris (P. vulgaris) is widespread in nature, mainly found in flora of human gastrointestinal tract. The current study was attempted to investigate the effects of Mr. Trivedi’s biofield treatment on lyophilized as well as revived state of P. vulgaris for antimicrobial susceptibility pattern, biochemical characteristics, and biotype. P. vulgaris cells were procured from Micro BioLogics Inc., USA, in sealed pack bearing the American Type Culture Collection (ATCC 33420) number and stored according to the recommended storage protocol until needed for experiments. Lyophilized vial of ATCC strain of P. vulgaris were divided in two parts, Gr. I: control and Gr. II: treatment. Group II was further subdivided into two parts, Gr. IIA and Gr. IIB. Gr. IIA was analysed on day 10. Gr. IIB was stored and analysed on day 143. After retreatment on day 143, the sample was divided into three separate tubes. First, second and third tubes were analysed on day 5, 10 and 15 respectively. All experimental parameters were studied using automated Micro Scan Walk-Away® system. The 16S rDNA sequencing of lyophilized treated sample was carried out to correlate the phylogenetic relationship of P. vulgaris with other bacterial species after treatment. The antimicrobial susceptibility and minimum inhibitory concentration showed 10.71% and 15.63% alteration respectively in treated cells of P. vulgaris as compared to control. It was observed that few biochemical reactions (6%) were altered in the treated groups with respect to control. Moreover, biotype number was substantially changed in treated cells, Gr. IIA (62060406, Proteus penneri) on day 10 as compared to control (62070406; Proteus vulgaris). 16S rDNA analysis showed that the identified sample in this experiment was Proteus vulgaris after biofield treatment. However, the nearest homolog genus-species was found to be Proteus hauseri. The results suggested that biofield treatment has impact on P. vulgaris in lyophilized as well as revived state.
img
Physicochemical and Spectroscopic Characteristics of Biofield Treated p-Chlorobenzophenone
Natural Sciences (Analytical Chemistry, Method Development (Chemistr)
473 views
Date of upload:
02.12.2016
Co-author:
Mahendra Kumar Trivedi, Dahryn Trivedi, Gopal Nayak, Khemraj Bairwa, Snehasis Jana
Abstract:
p-Chlorobenzophenone (p-CBP) is the important chemical intermediate used for the synthesis of several pharmaceutical drugs like fenofibrate, cetirizine, alprazolam, and benzodiazepine. The aim of this study was set to evaluate the impact of biofield energy treatment on physicochemical and spectroscopic properties of p-CBP. The study was accomplished in two groups i.e. control and treated. The treated group was subjected to Mr. Trivedi’s biofield energy treatment. Subsequently, the control and treated samples of p-CBP were analyzed using X-ray diffraction (XRD), particle size analyzer, surface area analyzer, differential scanning calorimetry (DSC), thermogravimetric analysis-derivative thermogravimetric analysis (TGA-DTG), Fourier transform infrared (FT-IR), and ultraviolet-visible (UV-Vis) spectroscopy. The XRD study exhibited the increase in average crystallite size (25.93%) as well as the intensity of XRD peaks of treated p-CBP, as compared to the control. The particle size analysis showed the reduction in particle size of fine particles (≤51.49 µm) by 21.6% (d10), whereas, increase in particle size of large particles (≥433.59 µm) by 12.82% (d90) and 17.71% (d99), respectively after biofield treatment, as compared to the control. The surface area analysis exhibited the surface area as 0.7005 m2/g in control and 0.7020 m2/g in treated sample of p-CBP. The DSC thermogram of treated p-CBP exhibited the slight decrease in melting temperature. However, the latent heat of fusion was significantly altered (24.90%) after biofield energy treatment as compared to the control. TGA analysis showed the weight loss by 57.36% in control and 58.51% in treated sample. In addition, the onset temperature of thermal degradation was also decreased by 6.32% after biofield energy treatment as compared to the control p-CBP. The FT-IR and UV spectroscopic study did not show the alteration in the wavenumber and wavelength, respectively in treated p-CBP as compared to the control. Altogether, the XRD, particle size and thermal analysis suggest that biofield energy treatment has significant impact on physical and thermal properties of treated p-CBP.
img
Characterization of Antimicrobial Susceptibility Profile of Biofield Treated Multidrug-resistant Klebsiella oxytoca
Natural Sciences (Biology)
527 views
Date of upload:
02.12.2016
Co-author:
Mahendra Kumar Trivedi, Dahryn Trivedi, Gopal Nayak, Harish Shettigar, Mayank Gangwar, Snehasis Jana
Abstract:
Klebsiella are opportunistic pathogens that cause a wide spectrum of severe diseases. The aim of the present study was to investigate the impact of biofield treatment on multidrug resistant strain of K. oxytoca with respect to antibiogram pattern along with biochemical study and biotype number. Clinical lab isolate of K. oxytoca was divided into two groups i.e. control and treated. Control group remain untreated and treated group was subjected to Mr. Trivedi’s biofield. The analysis was done on day 10 after biofield treatment and compared with control group. Control and treated groups were analyzed for antimicrobial susceptibility pattern, minimum inhibitory concentration (MIC), biochemical reactions and biotype number using MicroScan Walk-Away® automated system. Experimental results showed the impact of biofield treatment on K. oxytoca and found alteration in both antimicrobial sensitivity and MIC values as compared with untreated group. Antimicrobial sensitivity of about 26.67% tested antimicrobials out of thirty was altered with respect to control. MIC results showed about 12.50% alterations in tested antimicrobials as compared to control. Biochemical study showed 24.24% alteration in tested biochemical reactions after biofield treatment. A significant change in biotype number (7713 5272) was identified after biofield treatment as compared to control (7775 4332). In treated group, a new species was identified as Kluyvera ascorbata, as compared to control, K. oxytoca. Study findings suggest that biofield treatment has a significant effect in altering the antimicrobial sensitivity, MIC values, biochemical reactions and biotype number of multidrug resistant strain of K. oxytoca. Biofield treatment could be applied to alter the antibiogram-resistogram pattern of antimicrobials.
img
Characterization of Physical, Thermal and Spectroscopic Properties of Biofield Energy Treated p-Phenylenediamine and p-Toluidine
Natural Sciences (Analytical Chemistry, Method Development (Chemistr)
492 views
Date of upload:
02.12.2016
Co-author:
Mahendra Kumar Trivedi, Dahryn Trivedi, Gopal Nayak, Ragini Singh, Snehasis Jana
Abstract:
Aromatic amines and their derivatives are widely used in the production of dyes, cosmetics, medicines and polymers. However, they pose a threat to the environment due to their hazardous wastes as well as their carcinogenic properties. The objective of the study was to use an alternate strategy i.e. biofield energy treatment and analyse its impact on physicochemical properties of aromatic amine derivatives viz. p-phenylenediamine (PPD) and p-toluidine. For this study, both the samples were taken and divided into two parts. One part was considered as control and another part was subjected to Mr. Trivedi’s biofield treatment. After treatment, both samples were analysed for their physical, thermal and spectral properties as compared to their respective control samples. The analysis was done by using X-ray diffraction (XRD), surface area analyser, thermogravimetric analysis (TGA), Fourier transform infrared (FT-IR), and ultraviolet-visible (UV-Vis) spectroscopy. The XRD studies and surface area analysis of PPD sample revealed that the crystallite size and surface area of the treated sample was increased by 11.12% and 8.49%, respectively as compared to the control sample. In case of p-toluidine, the crystallite size and surface area of treated sample were decreased by 4.8% and 8.43%, respectively as compared to control. The treated PPD sample also showed an alteration in thermal degradation properties as it exhibited two-steps thermal decomposition as compared to single step decomposition in the control sample. In case of p-toluidine, the treated sample showed decreased onset temperature of degradation (112°C→100°C) and Tmax (temperature at which maximum weight loss occur) (136°C→125°C) as compared to control sample. Moreover, the FT-IR analysis revealed that C-C aromatic stretching peak in treated PPD sample was shifted to the lower frequency (1456→1444 cm-1) as compared to the control sample. Besides, in p-toluidine, the treated sample showed the alteration in frequencies of C-N-H bending, C-H bending, C-H stretching, and C-C aromatic stretching and bending peaks as compared to the control sample. However, no alteration was found in UV-Vis spectroscopic analysis of treated PPD and p-toluidine samples as compared to their respective control samples. These findings suggest that the biofield treatment significantly altered the physical, thermal and IR spectroscopic properties of PPD and p-toluidine samples.

There are no uploaded presentations yet.

There are no uploaded conferences yet.