My account
Information
Alice Branton
Trivedi Global Inc.
Position
CEO
Department
Field of research
Natural Sciences ()
Email
alice@trivedisrl.com
My OpenAccess portfolio

There are no uploaded videos yet.

There are no uploaded posters yet.

img
Spectral and Thermal Properties of Biofield Energy Treated Cotton
Natural Sciences (Analytical Chemistry, Method Development (Chemistr)
561 views
Date of upload:
02.12.2016
Co-author:
Mahendra Kumar Trivedi, Rama Mohan Tallapragada, Dahryn Trivedi, Gopal Nayak, Rakesh Kumar Mishra, Snehasis Jana
Abstract:
Cotton has widespread applications in textile industries due its interesting physicochemical properties. The objective of this study was to investigate the influence of biofield energy treatment on the spectral, and thermal properties of the cotton. The study was executed in two groups namely control and treated. The control group persisted as untreated, and the treated group received Mr. Trivedi’s biofield energy treatment. The control and treated cotton were characterized by different analytical techniques such as differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), fourier transform infrared (FT-IR) spectroscopy, and CHNSO analysis. DSC analysis showed a substantial increase in exothermic temperature peak of the treated cotton (450 ºC) as compared to the control sample (382ºC). Additionally, the enthalpy of fusion (∆H) was significantly increased by 86.47% in treated cotton. The differential thermal analysis (DTA) analysis showed an increase in thermal decomposition temperature of treated cotton (361ºC) as compared to the control sample (358ºC). The result indicated the increase in thermal stability of the treated cotton in comparison with the control. FT-IR analysis showed an alterations in –OH stretching (3408→3430 cm-1), carbonyl stretching peak (1713-1662 cm-1), C-H bending (1460-1431 cm-1), -OH bending (580-529 cm-1) and –OH out of plane bending (580-529 cm-1) of treated cotton with respect to the control sample. CHNSO elemental analysis showed a substantial increase in the nitrogen percentage by 19.16% and 2.27% increase in oxygen in treated cotton as compared to the control. Overall, the result showed significant changes in spectral and thermal properties of biofield energy treated cotton. It is assumed that biofield energy treated cotton might be interesting for textile applications.
img
Mass Spectrometric Analysis of Isotopic Abundance Ratio in Biofield Energy Treated Thymol
Natural Sciences (Analytical Chemistry, Method Development (Chemistr)
461 views
Date of upload:
14.12.2016
Co-author:
Mahendra Kumar Trivedi, Dahryn Trivedi, Gopal Nayak, Parthasarathi Panda, Snehasis Jana
Abstract:
Thymol is a natural monoterpenoid phenol possessing various pharmacological activities such as antimicrobial, antioxidant, etc. The stable isotope ratio analysis has drawn attention in numerous fields such as agricultural, food authenticity, biochemistry, metabolism, medical research, etc. An investigation of the effect of the biofield energy treatment (The Trivedi Effect®) on the isotopic abundance ratios of PM+1/PM and PM+2/PM in thymol using gas chromatography - mass spectrometry was attempted in this study. The sample, thymol was divided into two parts - one part was denoted as control and another part was referred as biofield energy treated sample that was given Mr. Trivediꞌs unique biofield energy. T1, T2, T3, and T4 were represented to different time interval analysis of the biofield treated thymol. The GC-MS spectra of the both control and biofield treated thymol indicated the presence of molecular ion peak [M+] at m/z 150 (calculated 150.10 for C10H14O) along with the similar pattern of fragmentation. The relative intensities of the parent molecule and other fragmented ions of the biofield treated thymol were enhanced as compared to the control thymol. The percentage change of the isotopic abundance ratio of PM+1/PM in the biofield treated thymol at T1, T2, T3 and T4 was increased by 3.25, 6.31, 96.75, and 140.25%, respectively as compared to the control thymol. In addition, the percentage change of the isotopic abundance ratio of PM+2/PM was increased in the biofield treated thymol at T1, T2, T3, and T4 by 5.33, 8.00, 101.33, and 140.00%, respectively with respect to the control sample. In summary, 13C, 2H, and 17O contributions from (C10H14O)+ to m/z 151 and 18O contribution from (C10H14O)+ to m/z 152 in the biofield treated thymol were significantly increased gradually with respect to the time and was found that biofield energy treatment has time dependent effect on it. Hence, the biofield energy treated thymol might display altered isotope effects such as physicochemical and thermal properties, binding energy and the reaction kinetics with respect to the control sample. So, biofield energy treated thymol could be advantageous for designing the synthetic scheme for the preparation of pharmaceuticals through its kinetic isotope effects. Besides, biofield treated thymol might be useful to overcome the problems associated with thymol for e.g. pungent flavor, high dose requirement for the activity through understanding its isotope effects and the determination of its pharmacokinetic profile, bioavailability.
img
Evaluation of Isotopic Abundance Ratio in Biofield Energy Treated Nitrophenol Derivatives Using Gas Chromatography-Mass Spectrometry
Natural Sciences (Analytical Chemistry, Method Development (Chemistr)
671 views
Date of upload:
14.12.2016
Co-author:
Mahendra Kumar Trivedi, Dahryn Trivedi, Gopal Nayak, Kalyan Kumar Sethi, Snehasis Jana
Abstract:
Nitrophenols are the synthetic organic chemicals used for the preparation of synthetic intermediates, organophosphorus pesticides, and pharmaceuticals. The objective of the present study was to evaluate the effect of biofield energy treatment on the isotopic abundance ratios of PM+1/PM, and PM+2/PM in o- and m-nitrophenol using the gas chromatography-mass spectrometry. The o- and m-nitrophenol were divided into two parts - one part was control sample, and another part was considered as biofield energy treated sample, which received Mr. Trivedi’s biofield energy treatment (The Trivedi Effect®). The biofield energy treated nitrophenols having analyzed at different time intervals were designated as T1, T2, T3, and T4. The GC-MS analysis of both the control and biofield treated samples indicated the presence of the parent molecular ion peak of o- and m-nitrophenol (C6H5NO3+) at m/z 139 along with major fragmentation peaks at m/z 122, 109, 93, 81, 65, and 39. The relative peak intensities of the fragmented ions in the biofield treated o- and m-nitrophenol were notably changed as compared to the control sample with respect to the time. The isotopic abundance ratio analysis using GC-MS revealed that the isotopic abundance ratio of PM+1/PM in the biofield energy treated o-nitrophenol at T2 and T3 was significantly increased by 14.48 and 86.49%, respectively as compared to the control sample. Consequently, the isotopic abundance ratio of PM+2/PM in the biofield energy treated sample at T2 and T3 was increased by 11.36, and 82.95%, respectively as compared to the control sample. Similarly, in m-nitrophenol, the isotopic abundance ratio of PM+1/PM in the biofield energy treated sample at T1, T3, and T4 was increased by 5.82, 5.09, and 6.40%, respectively as compared to the control sample. Subsequently, the isotopic abundance ratio of PM+2/PM at T1, T2, T3 and T4 in the biofield energy treated m-nitrophenol was increased by 6.33, 3.80, 16.46, and 16.46%, respectively as compared to the control sample. Overall, the isotopic abundance ratios of PM+1/PM (2H/1H or 13C/12C or 15N/14N or 17O/16O), and PM+2/PM (18O/16O) were altered in the biofield energy treated o- and m-nitrophenol as compared to the control increased in most of the cases. The biofield treated o- and m-nitrophenol that have improved isotopic abundance ratios might have altered the physicochemical properties and could be useful in pharmaceutical and chemical industries as an intermediate in the manufacturing of pharmaceuticals and other useful chemicals for the industrial application.
img
Isotopic Abundance Ratio Analysis of 1,2,3-Trimethoxybenzene (TMB) After Biofield Energy Treatment (The Trivedi Effect®) Using GC-MS
Natural Sciences (Analytical Chemistry, Method Development (Chemistr)
499 views
Date of upload:
14.12.2016
Co-author:
Mahendra Kumar Trivedi, Dahryn Trivedi, Gopal Nayak, Parthasarathi Panda, Snehasis Jana
Abstract:
1,2,3-Trimethoxybenzene (TMB) is one of the most versatile chemical used for the synthesis of several pharmaceuticals, dyes, polymers, organic compounds, etc. The stable isotope ratio analysis has increased attention day-by-days in several fields such as agricultural, food authenticity, biochemistry, medical research, etc. The current study was aimed to evaluate the effect of the biofield energy treatment on the isotopic abundance ratios of 13C/12C or 2H/1H or 17O/16O (PM+1/PM) and 18O/16O (PM+2/PM) in TMB using Gas chromatography - mass spectrometry (GC-MS) technique. TMB was divided into two parts - one part was denoted as control and another part was referred as biofield energy treated sample that was received through Mr. Trivediꞌs unique biofield energy (The Trivedi Effect®). The GC-MS of the biofield treated TMB was characterized at different time intervals considered as T1, T2, T3, and T4 to examine the impact of the biofield energy treatment on isotopic abundance ratio with respect to the time. The GC-MS spectra of the both control and biofield treated TMB exhibited the presence of molecular ion peak [M+] at m/z 168 (calculated 168.08 for C9H12O3) along with similar pattern of fragmentation. The relative peak intensities of the fragmented ions in the biofield treated TMB, particularly at T2 and T3 was altered from the control sample. The isotopic abundance ratio analysis in the biofield treated TMB exhibited that the isotopic abundance ratio of PM+1/PM in the biofield treated TMB at T2 and T3 was significantly enhanced by 128.13 and 117.99%, respectively with respect to the control sample. Consequently, the percentage change in isotopic abundance ratio of PM+2/PM was significantly increased in the biofield treated TMB at T2 and T3 by 125.93 and 116.67%, respectively as compared with the control TMB. The isotopic abundance ratios (PM+1/PM and PM+2/PM) in the biofield treated TMB at T1 and T4 was altered with respect to the control TMB. In summary, 13C, 2H, and 17O contributions from (C9H12O3)+ to m/z 169 and 18O contribution from (C9H12O3)+ to m/z 170 for the biofield treated TMB, particularly at T2 and T3 were significantly improved and biofield treated TMB might exhibit changed isotope effects as compared to the control sample. The biofield treated TMB might assist to develop new chemicals and pharmaceuticals through using its kinetic isotope effects like understanding the reaction mechanism, the enzymatic transition state and all aspects of enzyme mechanisms.

There are no uploaded presentations yet.

There are no uploaded conferences yet.