My account
Information
Gopal Nayak
Calcutta University
Position
Researcher
Department
Field of research
Natural Sciences (Biology)
Email
gopal@trivedisrl.com
My OpenAccess portfolio

There are no uploaded videos yet.

There are no uploaded posters yet.

img
Effect of Biofield Energy Treatment on Streptococcus group B: A Postpartum Pathogen
Natural Sciences (Biology)
696 views
Date of upload:
18.11.2016
Co-author:
Mahendra Kumar Trivedi, Alice Branton, Dahryn Trivedi, Harish Shettigar, Sambhu Charan Mondal, Snehasis Jana
Abstract:
Streptococcus agalactiae group B (S. agalactiae gr. B) is widespread in nature mainly causes bacterial septicemia and neonatal meningitis. The current study was attempted to investigate the effect of biofield treatment on S. agalactiae gr. B with respect of antimicrobial sensitivity, biochemical reactions and bio typing. S. agalactiae gr. B strain was used in this experiment bearing the American Type Culture Collection (ATCC 12386) number and stored according to the recommended storage protocol. The revived and lyophilized state of ATCC strains of S. agalactiae gr. B were selected for the study. Gr. I was considered as control. Both revived (Group; Gr. II) and lyophilized (Gr. III) strains of S. agalactiae gr. B were subjected to Mr. Trivedi’s biofield treatment. Gr. II was assessed on day 5 and day 10 while Gr. III on day 10 with respect to the control (Gr. I) using MicroScan Walk-Away® system. Although biofield treatment did not show any change with respect to susceptibility pattern. However the minimum inhibitory concentration of S. agalactiae gr. B showed significant (70.37%) alteration, out of twenty-seven tested antimicrobials, among which in Gr. II i.e. 62.96% on day 5 and 66.67% on day 10 while no alteration was found in lyophilized group (Gr. III) as compared to the control. Moreover, the improvement of MIC value of norfloxacin was observed by two-fold (8 to ≤4 μg/mL) in Gr. II on day 10 after biofield energy treatment as compared to the control. It was observed that overall 48.28% biochemical reactions, out of twenty-nine were altered in Gr. II with respect to the control. Moreover, biotype numbers were changed in Gr. II on day 5 (777777615) and on day 10 (757677405) as compared to the control (237147047). The results suggest that biofield treatment has significant impact on S. agalactiae gr. B in revived treated cells (Gr. II) with respect to MIC values, biochemical reactions pattern and biotype number.
img
Bio-field Treatment: A Potential Strategy for Modification of Physical and Thermal Properties of Gluten Hydrolysate and Ipomoea Macroelements
Natural Sciences (Analytical Chemistry, Method Development (Chemistr)
648 views
Date of upload:
18.11.2016
Co-author:
Mahendra Kumar Trivedi, Rama Mohan Tallapragada, Alice Branton, Dahryn Trivedi, Rakesh Kumar Mishra, Snehasis Jana
Abstract:
The objective of present study was to study the effect of biofield treatment on physical and thermal properties of gluten hydrolysate (GH) and ipomoea macroelements (IM). The study was performed in two groups (control and treated). The control group remained as untreated, and biofield treatment was given to treated group. The control and treated GH and IM were characterized by particle size analysis, surface area analysis, X-ray diffraction (XRD), Differential scanning calorimetry (DSC), and Thermogravimetric analysis (TGA). Particle size results of treated GH showed that d50 (average particle size) was decreased by 3.15% and d99 (size exhibited by 99% of powder particles) by 18.40% as compared to control GH sample. The treated IM also showed substantial reduction in average particle size d50 by 4.70% and d99 by 44.40% as compared to control sample. BET analysis showed significant increase in surface area of treated GH by 374.40 % as compared to control sample. However, the treated IM showed reduction in surface area by 14.30% as compared to control sample. XRD data suggested that both control and treated GH samples were amorphous in nature. Contrarily, the treated IM sample showed intense crystalline nature; though minimal decrease was observed in crystallinity as compared to control. DSC data showed increase in melting temperature of the treated GH as compared to control which can be correlated to alteration in kinetic energy of sample. Additionally, the DSC of treated IM also showed increase in melting temperature as compared to control IM. A significant increase in latent heat of fusion (∆H) was observed in treated GH by 302.55% with respect to control. Similarly, the treated IM showed 24.87% increase in latent heat of fusion as compared to control. TGA data showed higher thermal decomposition temperature (Tmax) of treated GH as compared to control. However, treated IM showed that Tmax was decreased as compared to control sample. These results suggested that biofield treatment has substantially changed the physical and thermal properties of the treated organic products (GH and IM).
img
Spectroscopic Characterization of Disulfiram and Nicotinic Acid after Biofield Treatment
Natural Sciences (Analytical Chemistry, Method Development (Chemistr)
817 views
Date of upload:
19.11.2016
Co-author:
Mahendra Kumar Trivedi, Alice Branton, Dahryn Trivedi, Khemraj Bairwa, Snehasis Jana
Abstract:
Disulfiram is being used clinically as an aid in chronic alcoholism, while nicotinic acid is one of a B-complex vitamin that has cholesterol lowering activity. The aim of present study was to investigate the impact of biofield treatment on spectral properties of disulfiram and nicotinic acid. The study was performed in two groups i.e., control and treatment of each drug. The treatment groups were received Mr. Trivedi’s biofield treatment. Subsequently, spectral properties of control and treated groups of both drugs were studied using Fourier transform infrared (FT-IR) and Ultraviolet-Visible (UV-Vis) spectroscopic techniques. FT-IR spectrum of biofield treated disulfiram showed the shifting in wavenumber of C-H stretching from 1496 to 1506 cm-1 and C-N stretching from 1062 to 1056 cm-1. The intensity of S-S dihedral bending peaks (665 and 553 cm-1) was also increased in biofield treated disulfiram sample, as compared to control. FT-IR spectra of biofield treated nicotinic acid showed the shifting in wavenumber of C-H stretching from 3071 to 3081 cm-1 and 2808 to 2818 cm-1. Likewise, C=C stretching peak was shifted to higher frequency region from 1696 cm-1 to 1703 cm-1 and C-O (COO-) stretching peak was shifted to lower frequency region from 1186 to 1180 cm-1 in treated nicotinic acid. UV spectrum of control and biofield treated disulfiram showed similar pattern of UV spectra. Whereas, the UV spectrum of biofield treated nicotinic acid exhibited the shifting of absorption maxima (λmax) with respect of control i.e., from 268.4 to 262.0 nm, 262.5 to 256.4, 257.5 to 245.6, and 212.0 to 222.4 nm. Over all, the FT-IR and UV spectroscopy results suggest an impact of biofield treatment on the force constant, bond strength, and dipole moments of treated drugs such as disulfiram and nicotinic acid that could led to change in their chemical stability as compared to control.
img
Characterization of Physical and Thermal Properties of Biofield Treated Neopentyl Glycol
Natural Sciences (Analytical Chemistry, Method Development (Chemistr)
687 views
Date of upload:
19.11.2016
Co-author:
Mahendra Kumar Trivedi, Rama Mohan Tallapragada, Alice Branton, Dahryn Trivedi, Rakesh Kumar Mishra, Snehasis Jana
Abstract:
Neopentyl glycol (NPG) has been extensively used as solid-solid phase change materials (PCMs) for thermal energy storage applications. The objective of the present study was to evaluate the impact of biofield treatment on physical, spectral and thermal properties of NPG. The study was performed in two groups (control and treated). The control group remained as untreated, and treatment group was subjected to Mr. Trivedi’s biofield treatment. The control and treated NPG were characterized by X-ray diffraction (XRD), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and Fourier transform infrared (FT-IR) spectroscopy. XRD study revealed the decrease in crystallite size of treated NPG by 21.97% as compared to control sample. DSC studies showed slight change in melting temperature of treated NPG as compared to control sample. TGA analysis showed 55.66% weight loss in control NPG however, the treated sample showed reduction in weight loss (44.81%). Additionally, the maximum thermal decomposition temperature (Tmax) of treated NPG (160.40°C) was minimally increased with respect to control sample (159.72°C). This can be inferred as good thermal stability of biofield treated NPG with respect to control. FT-IR spectroscopy showed no structural changes in treated NPG with respect to control sample. The overall results showed that biofield treatment has affected the physical and thermal properties of treated NPG. Moreover, good thermal stability of treated NPG showed that it could be used as phase change materials for thermal energy storage applications.

There are no uploaded presentations yet.

There are no uploaded conferences yet.