My account
Information
Gopal Nayak
Calcutta University
Position
Researcher
Department
Field of research
Natural Sciences (Biology)
Email
gopal@trivedisrl.com
My OpenAccess portfolio

There are no uploaded videos yet.

There are no uploaded posters yet.

img
Bio-field Treatment: An Effective Strategy to Improve the Quality of Beef Extract and Meat Infusion Powder
Natural Sciences (Analytical Chemistry, Method Development (Chemistr)
623 views
Date of upload:
19.11.2016
Co-author:
Mahendra Kumar Trivedi, Shrikant Patil, Rama Mohan Tallapragada, Snehasis Jana, Rakesh Kumar Mishra
Abstract:
The present research work investigated the influence of bio-field treatment on two common flavoring agents used in food industries namely beef extract powder (BEP) and meat infusion powder (MIP). The treated powders were characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), particle size analysis, surface area analysis, differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). The FT-IR results showed disappearance of triglycerides peaks in both the treated powders as compared to control. XRD results corroborated the amorphous nature of both control and treated samples. The BEP showed enhanced average particle size (d50) and d99 (size exhibited by 99% of powder particles) by 5.7% and 16.1%, respectively as compared to control. Contrarily, the MIP showed a decreased particle size (d50; 0.4% and d99; 18.1%) as compared to control. It was assumed that enormous energy was stored in MIP after bio-field treatment that led to fracture into smaller particles. The surface area was increased in both the treated powders. DSC result showed significant increase in melting temperature, in BEP and MIP, which indicated the higher thermal stability of the samples. However, the specific heat capacity (∆H) was decreased in both samples, which was probably due to high energy state of the powders.
img
Evaluation of the Impact of Biofield Treatment on Physical and Thermal Properties of Casein Enzyme Hydrolysate and Casein Yeast Peptone
Natural Sciences (Biology)
614 views
Date of upload:
19.11.2016
Co-author:
Mahendra Kumar Trivedi, Shrikant Patil, Rama Mohan Tallapragada, Snehasis Jana, Rakesh Kumar Mishra
Abstract:
In the present study, the influence of biofield treatment on physical and thermal properties of Casein Enzyme Hydrolysate (CEH) and Casein Yeast Peptone (CYP) were investigated. The control and treated samples were characterized by Fourier transform infrared (FT-IR) spectroscopy, differential scanning calorimetry (DSC), Thermo Gravimetric Analysis (TGA), particle size and surface area analysis. The FTIR results revealed that biofield treatment has caused reduction of amide group (amide-I and amide-II) stretching vibration peak that is associated with strong intermolecular hydrogen bonding in treated CEH as compared to control. However, no significant changes were observed in FTIR spectrum of treated CYP. The TGA analysis of treated CEH showed a substantial improvement in thermal stability which was confirmed by increase in maximum thermal decomposition temperature (217°C) as compared to control (209°C). Similarly, the treated CYP also showed enhanced thermal stability as compared to control. DSC showed increase in melting temperature of treated CYP as compared to control. However the melting peak was absent in DSC of treated CEH which was probably due to rigid chain of the protein. The surface area of treated CEH was increased by 83% as compared to control. However, a decrease (7.3%) in surface area was observed in treated CYP. The particle size analysis of treated CEH showed a significant increase in average particle size (d50) and d99 value (maximum particle size below which 99% of particles are present) as compared to control sample. Similarly, the treated CYP also showed a substantial increase in d50 and d99 values which was probably due to the agglomeration of the particles which led to formation of bigger microparticles. The result showed that the biofield treated CEH and CYP could be used as a matrix for pharmaceutical applications.
img
Evaluation of Physical, Thermal and Spectroscopic Properties of Biofield Treated P-Hydroxyacetophenone
Natural Sciences (Analytical Chemistry, Method Development (Chemistr)
611 views
Date of upload:
19.11.2016
Co-author:
Mahendra Kumar Trivedi, Alice Branton, Dahryn Trivedi, Ragini Singh, Snehasis Jana
Abstract:
P-Hydroxyacetophenone (pHAP) is an aromatic ketone derivative that is mainly used in the manufacturing of various pharmaceuticals, flavours, fragrances, etc. In the present study, the impact of Mr. Trivedi’s biofield energy treatment was analysed on various properties of pHAP viz. crystallite size, surface area, melting temperature, thermal decomposition, and spectral properties. The pHAP sample was divided into two parts; one was kept as control sample while another part was named as treated sample. The treated sample was given the biofield energy treatment and various parameters were analysed as compared to the control sample by X-ray diffraction (XRD), surface area analyser, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), ultraviolet-visible (UV-VIS), and Fourier transform infrared (FT-IR) spectroscopy. The XRD studies showed the decrease in crystallite size of the treated sample (61.25 nm) as compared to the control (84.18 nm); however the intensity of peaks in diffractogram was increased in treated sample. Besides, the surface area of treated sample was decreased by 41.17% as compared to the control. The TGA analysis revealed that onset temperature as well as Tmax (maximum thermal decomposition temperature) was increased in the treated sample. However, the latent heat of fusion (ΔH) was decreased from 124.56 J/g (control) to 103.24 J/g in the treated sample. The treated and control samples were also evaluated by UV-Vis and FT-IR spectroscopy and did not show any significant alteration in spectra of treated sample as compared to the respective control. Hence, the overall results suggest that there was an impact of biofield energy treatment on the physical and thermal properties of pHAP sample.
img
Isotopic Abundance Analysis of Biofield Treated Benzene, Toluene and p-Xylene Using Gas Chromatography-Mass Spectrometry (GC-MS)
Natural Sciences (Analytical Chemistry, Method Development (Chemistr)
699 views
Date of upload:
19.11.2016
Co-author:
Mahendra Kumar Trivedi, Alice Branton, Dahryn Trivedi, Gunin Saikia, Snehasis Jana
Abstract:
Benzene, toluene and p-xylene are derivatives of benzene, generally produced from crude petroleum and have numerous applications in industry. The aim of the present study was to evaluate the impact of biofield treatment on isotopic abundance of these benzene derivatives by gas chromatography-mass spectrometry (GC-MS). Benzene, toluene and p-xylene samples were divided into two parts: control and treatment. Control part was remained as untreated and treatment part was subjected to Mr. Trivedi’s biofield treatment. Control and treated samples were characterized using GC-MS. GC-MS data revealed that isotopic abundance ratio of 13C/12C or 2H/1H (PM+1/PM) of treated samples were significantly increased from un-substituted to substituted benzene rings (where, PM- primary molecule, PM+1- isotopic molecule either for 13C/12C and/or 2H/1H). The isotopic abundance ratio of 13C/12C or 2H/1H (PM+1/PM) in benzene was decreased significantly by 42.14% as compared to control. However, the isotopic abundance ratio of (PM+1/PM) in treated toluene and p-xylene was significantly increased up to 531.61% and 134.34% respectively as compared to their respective control. Thus, overall data suggest that biofield treatment has significantly altered the isotopic abundance ratio of (PM+1/PM) in a different way for un-substituted and substituted benzenes.

There are no uploaded presentations yet.

There are no uploaded conferences yet.